证明 :x⼀(y+z)+y⼀(z+x)+z⼀(x+y)>=3⼀2 其中 x,y,z>0

2024-12-28 17:43:07
推荐回答(1个)
回答1:

x/(y+z)+y/(x+z)+z/(x+y)>=3/2
设S=x+y+z
x/(y+z)+y/(x+z)+z/(x+y)
=S/(y+z)+S/(x+z)+S/(x+y)-3
>=9/[(y+z)/S+(x+z)/S+(y+x)/S]-3
=9/2-3
=3/2
以上不等号是用算术平均>=调和平均,即:a+b+c/3>=3/(1/a+1/b+1/c)
变一下就是a+b+c>=9/(1/a+1/b+1/c)