已知tanθ=(sin α-cos α)⼀(sin α+cos α) a,θ(0,π⼀2) 求证 sinα-cosα=√2sinθ

2024-12-31 17:11:48
推荐回答(1个)
回答1:

∵ α,θ∈(0,π/2)
∴ tanθ>0,得sinα>cosα
tanθ=(sin α-cos α)/(sin α+cos α)
cotθ=(sin α+cos α)/(sin α-cos α)
cot²θ=(1+2sinαcosα)/(1-2sinαcosα)=(1+sin2α)/(1-sin2α)
1+cot²θ=2/(1-sin2α)
sin²θ=(1-sin2α)/2
sin²θ=(sinα-cosα)²/2
则 sinα-cosα=√2sinθ