设1/2+2/2^2+3/2^3+...+n/2^n=S
则(1/2)S=1/2^2+2/2^3+...+n-1/2^n+n
/2^n+1
S-(1/2)S=1/2+1/2^2+1/2^3+...+1/2^n-n
/2^n+1=(1/2)S
前n项用等比数列的求和公式,再减去1/2^n+1.就是S的一半,最后乘以2就是了
S=1/2+2/2^2+.........+n/2^n
S/2= 1/2^2+2/2^3+...+(n-1)/2^n+n/2^(n+1)
相减:
S/2=1/2+1/2^2+..+1/2^n-n/2^(n+1)=1/2*(1-1/2^n)/[1-1/2] -n/2^(n+1)
=1-1/2^n-n/2^(n+1)
S=2-2/2^n-n/2^n
=2-(n+2)/2^n
n/2