已知log以9为底数5的对数=a,log以3为底数7的对数=b,试用a,b表示log以21为底数35的对数

2024-12-22 21:14:54
推荐回答(1个)
回答1:

用 log9(5) 表示 log 以 9 为底,5的对数,其余类似。因为 log9(5) = 1/2*log3(5) = a,所以 log3(5) = 2a.而 log21(35) = log21(5)+log21(7),现在要分别计算 log21(5) 与 log21(7) 的值。因为 log21(5) = 1/log5(21) = 1/[log5(3)+log5(7)],而 log5(3) = 1/log3(5) = 1/(2a),以及 log5(7) = log3(7)/log3(5) = b/(2a),所以 log21(5) = 1/[1/(2a)+b/(2a)] = 2a/(b+1) (1)类似地,log21(7) = 1/log7(21) = 1/[1+log7(3)] = 1/[1+1/b] = b/(b+1) (2)所以根据(1)(2)两式即知 log21(35) = (2a+b)/(b+1).