关于matlab中矩阵运算A⼀B的疑问

2024-12-28 08:50:11
推荐回答(3个)
回答1:

matlab里的'/'不完全等于矩阵除法。
你可以用help mrdivide看一下'/'的帮助:
>> help mrdivide

/ Slash or right matrix divide.
A/B is the matrix division of B into A, which is roughly the
same as A*INV(B) , except it is computed in a different way.
More precisely, A/B = (B'\A')'. See MLDIVIDE for details.

就是说A/B可以大致看成A*inv(B),但用的是另一种方法。更确切的讲A/B = (B'\A')'。

那再看看'\'(左除或者反除)是什么东东。
>> help mldivide

\ Backslash or left matrix divide.
A\B is the matrix division of A into B, which is roughly the
same as INV(A)*B , except it is computed in a different way.
If A is an N-by-N matrix and B is a column vector with N
components, or a matrix with several such columns, then
X = A\B is the solution to the equation A*X = B computed by
Gaussian elimination. A warning message is printed if A is
badly scaled or nearly singular. A\EYE(SIZE(A)) produces the
inverse of A.

If A is an M-by-N matrix with M < or > N and B is a column
vector with M components, or a matrix with several such columns,
then X = A\B is the solution in the least squares sense to the
under- or overdetermined system of equations A*X = B. The
effective rank, K, of A is determined from the QR decomposition
with pivoting. A solution X is computed which has at most K
nonzero components per column. If K < N this will usually not
be the same solution as PINV(A)*B. A\EYE(SIZE(A)) produces a
generalized inverse of A.

就是说当A是N阶方阵B为N行的列向量时,X=A\B就是线性方程组A*X=B的解,算法是用高斯消去法。A\EYE(SIZE(A))产生的是方阵A的逆矩阵。

如果A是M*N的矩阵且M≠N,B是跟A行数(M行)相同的列向量时,X=A\B是非满秩的线性方程组A*X=B的解系,A的秩K由QR分解得出。如果K
总而言之,A\B就是求A*X=B的解,你可以看作是A的逆矩阵,只不过是广义逆矩阵,这样A不是方阵也可以计算的。

至于A/B,在解线性方程组上比\少用一些,因为通常都把B写成列向量,所以用反除\就可以了。用/的话,B通常是行向量。
可以把B/A看作是X*A=B的解,这里B的列数等于A的列数。

A\B=pinv(A)*B
A/B=A*pinv(B)

举个例子:
>> A=pascal(3) %A赋值为3*3的方阵。

A =

1 1 1
1 2 3
1 3 6

>> b=[1:3]' % b是3*1的列向量。

b =

1
2
3

>> x=A\b % 用反除求Ax=b的解,结果x是个列向量,注意是A\b不是b\A

x =

0
1
0

>> A*x % 验证一下A*x刚好等于b

ans =

1
2
3

>> x=b'/A' % 这回是正除了,不过b'是行向量,A'也倒一下,正除的时候就是b'/A'了,不是A'/b'了,结果x是个行向量

x =

0 1 0

>> x*A' % 验证一下,跟b'一样。

ans =

1 2 3

>> A=rand(3,4) % 这回重新赋值,A不是方阵了,是3*4的矩阵

A =

0.5298 0.3798 0.4611 0.0592
0.6405 0.7833 0.5678 0.6029
0.2091 0.6808 0.7942 0.0503

>> x=A\b % 实际上方程组没有唯一确定的解,而是无数解,所以解出来的是一个特解

x =

-1.5132
4.9856
0
-1.5528

>> A*x % 验证,跟b相等。

ans =

1.0000
2.0000
3.0000

>> A=rand(3,2) % 再看看3*2的矩阵,行数>列数的情况

A =

0.4154 0.0150
0.3050 0.7680
0.8744 0.9708

>> x=A\b

x =

1.8603
1.5902

>> A*x % 验证一下,嗯?怎么不等于b了?

ans =

0.7966
1.7886
3.1704

% 为什么呢?因为方程数(行数)太多,未知数(列数)个数太少,2个未知数,用2个线性无关的方程就可以求确定的解了,现在方程多了,不能同时满足所有方程,所以实际上是无解,只不过matlab里用的是一个最小二乘意义上的近似解,所以验证时不等,只是尽可能近似的满足所有方程。

回答2:

这是 X*A=B 方程组

回答3:

a./b是数组相除

>> a=[1;2;3]

a =

1
2
3

>> b=[1;2;3]

b =

1
2
3

>> a/b

ans =

0 0 0.3333
0 0 0.6667
0 0 1.0000

>> a./b

ans =

1
1
1