基础不同,学习人工智能的时间也是不同的,零基础学员人工智能培训周期一般在五个月左右。零基础学员没有计算机编程能力也没有相关开发经验,所以要从最基本的 python 编程语言开始学习,python因为其功能强大,应用广泛,同时有很多的现成的人工智能,机器学习相关的资源,因此选择 python作为人工智能学习的基础,学习起来并不是很困难,一个月左右就可以胜任。零基础学员学习了编程之后,具备一定的人工智能基础和学习能力之后就可以开始学习人工智能相关课程了。如果你有对应的计算机编程或者有过相关的开发经验,然后来学习人工智能,那么难度上会小很多,而且根据个人的情况,可以考虑直接跳过基础部分内容的学习,直接开始学习后面中级和高级部分的课程,这样一来,你的学习所需要的时间就会缩短。
人工智能一般要学以下几个方面的内容:
课程阶段一:Python 基础
课程阶段二:Python 进阶
课程阶段三:数据库实战开发
课程阶段四:web 前端开发
课程阶段五:Python 爬虫开发
课程阶段六:Django 框架
课程阶段七:云计算平台
课程阶段八:数据分析
课程阶段九:人工智能
人工智能培训一般在5个月到6个月左右,如需学习人工智能,推荐选择【达内教育】。
人工智能学习内容具体如下:
1、机器学习的基础是数学,入门AI必须掌握一些必要的数学基础,但是并不是全部的数学知识都要学,只学工作上实际有用到的,比如是微积分、概率论、凸优化等这些。
2、数据分析里需要应用到的内容也需要掌握,但不是网上所说的从零开始做数据分析,而是数据挖掘或者说是数据科学领域相关的东西,比如要知道计算机里面怎么挖掘数据、相关的数据挖掘工具等。补足了以上数学和数据挖掘基本知识,才可以正式进行【机器学习算法】原理的学习。
3、最后需要对人工智能有全局的认知,包括机器学习、深度学习两大模块,相关的算法原理、推导和应用的掌握,以及最重要算法思想。感兴趣的话点击此处,免费学习一下
想了解更多有关人工智能的相关信息,推荐咨询【达内教育】。【达内教育】重磅推出“因材施教、分级培优”创新教学模式,同一课程方向,面向不同受众群体,提供就业、培优、才高三个级别教学课程,达内“因材施教、分级培优“差异化教学模式,让每一位来达内学习的学员都能找到适合自己的课程。达内IT培训机构,试听名额限时抢购。
阶段一:Python开发基础
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
阶段二:Python高级编程和数据库开发
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
阶段三:前端开发
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
阶段四:WEB框架开发
Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
阶段五:爬虫开发
Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
阶段六:全栈项目实战
Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
阶段七:算法&设计模式
阶段八:数据分析
Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
阶段九:机器学习、图像识别、NLP自然语言处理
Python全栈开发与人工智能之人工智能学习内容包括:机器学习、图形识别、人工智能玩具开发等。
阶段十:Linux系统&百万级并发架构解决方案
阶段十一:高并发语言GO开发
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。
一般来说都是培训五个月左右,有编程的基础内容然后是Python语言的学习,还有爬虫啊数据分析这些,相对来说Python语言还是比较简单的,五个月左右的培训达到就业的程度是基本没有问题的,当然如果你是浑水摸鱼打鱼晒网的话,那肯定是不行的。
一般培训中,会分阶段进行,而且还有项目实训,还是挺好的,学起来循序渐进,技术还是可以速成的。
现阶段人工智能是一个十分火热的事物,火热到什么地步呢?火热到很多高校都开始设立人工智能方面的专业和课程,并且加大力度培养人工智能人才,那么人工智能人才需要具备什么样的知识架构呢?人工智能人才需要学习什么知识呢?下面我们就给大家介绍一下这个内容。
首先,人工智能的学习需要高水平的人工智能人才,而对人工智能人才的要求就是需要数学基础好、计算/软件程序功底扎实、人工智能专业知识全面。首先,无论是在抽象建模还是模型算法分析设计环节,都需要依赖良好的数学基础,因为人工智能所面对的问题千变万化,这导致了其所涉及的数学工具种类多样。事实上,人工智能的核心领域,即机器学习是计算机科学中对数学基础要求最高的分支之一。所以人工智能对人才的有很多的要求。
其次就是复杂现实任务通常可以从多种角度进行抽象,而不同的抽象将导致巨大的差异。这就需要注意很多的问题,比如抽象出的问题是否可计算?从程序代码的角度是否易实现?从计算平台的角度是否便于高效处理?等等。要想回答一下这个问题就需要在算法分析、程序设计、计算系统方面具备扎实的基础。事实上,对一些现代大型人工智能程序而言,甚至连高维数组的存储顺序都需做到优化,这如果没有扎实的计算、软件程序功底显然是不行的。
最后,在我们解决现实的人工智能应用任务时,往往同时涉及多种人工智能专业知识,需有效进行融合发挥。因此,高水平的、能解决企业关键技术难题的人工智能人才,必须具备全面的人工智能专业知识。这些知识能够方便我们理解人工智能并能够朝着更好的方向发展。所以说,如果数学不好的同学那么就需要考虑考虑数据自己究竟是否适合这个专业。
在最后需要提醒大家的是,学习人工智能还是需要学习计算机、自动化、电子、软件等内容。人工智能所解决的问题都是充满不确定性的复杂问题,这就需要很高的处理事务的能力,如果我们不擅长处理事情,并且不适应随时随地出现的不确定性工作,那也不适合这个行业,就不建议大家学习这个专业,希望这篇文章能够给大家带来参考价值。