教学建议
一、知识结构
二、重点难点分析
本节教学的重点是同位角、内错角、同旁内角的概念.难点为在较复杂的图形中辨认同位角、内错角、同旁内角.掌握同位角、内错角、同旁内角的相关概念是进一步学习平行线、四边形等后续知识的基础.
(1)两条直线被第三条直线所截,构成八个角(简称“三线八角”),其中同位角4对,内错角2对,同旁内角2对.
(2)准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.
(3)在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系.
(4)在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系.
三、教法建议
1.上节课讨论了两条直线相交以后所形成的四个角,这一节课是进一步讨论三条直线相交后所形成的八个角,所以在教课过程,要运用基本图形结构将所学的知识及其内在联系向学生展示.
2.在讲三线八角概念时,一定要细致地分析、顾名思义,把握住两个关键的环节,“三条线与一条线”,尽量给出变式的图形,让学生分辨清楚.
3.这节课虽然不涉及两条直线平行后被第三条直线所截的问题,但在可能的情况下,将平行线的图形让学生见到,对下一步的学习很有好处,例如,平行四形中的内错角,学生开始接受起来有一定困难,在这一课时中,出现这个基本图形,为以后学习打下基础.
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解同位角、内错角、同旁内角的概念.
2.结合图形识别同位角、内错角、同旁内角.
(二)能力训练点
1.通过变式图形的识图训练,培养学生的识图能力.
2.通过例题口答“为什么”,培养学生的推理能力.
(三)德育渗透点
从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点.
(四)美育渗透点
通过“三线八角”基本图形,使学生认识几何图形的位置美.
二、学法引导
1.教师教法:尝试指导,讨论评价、变式练习、回授.
2.学生学法:主动思考,相互研讨,自我归纳.
三、重点、难点、疑点及解决办法
(一)生点
同位角、内错角、同旁内角的概念.
(二)难点
在较复杂的图形中辨认同位角、内错角、同旁内角.
(三)疑点
正确理解新概念.
(四)解决办法
引导学生讨论归纳三类角的特征,并以练习加以巩固.
四、课时安排
1课时
一、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
1.通过一组练习创设情境,复习基础知识,引入新课.
2.通过学生阅读书本,教师设问引导,练习巩固讲授新课.
3.通过师生互答完成课堂小结.
七、教学步骤
(一)明确目标
使学生掌握“三线八角”,并能在图形中进行辨识.
(二)整体感知
以复习旧知创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知.
(三)教学过程
创设情境,复习导入
回答下列问题:
1.如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系?
2.如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系?
3.如图,三条直线AB、CD、EF交于一点O,则图中有几对对顶角,有几对邻补角?
老师都和你讲不明白?去问老师哦!
他要和比说不明白那就谁也说不明白
书面沟通和当面沟通是不一个意义
两直线平行,内错角相等
两直线平行,同位角相等
两直线平行,同旁内角互补
内错角相等 两直线平行
同位角相等 两直线平行
同旁内角互补 两直线平行
两直线平行,内错角相等
两直线平行,同位角相等
两直线平行,同位角互补