设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明:至少存在一点,使得f✀

2024-12-16 07:12:05
推荐回答(1个)
回答1:

构造辅助函数
f(x)=f(x)e^(2x),它在[0,1]上连续,在(0,1)内可导
且f(1)=f(0)=0
那么,根据罗尔中值定理,存在一点§,使得f'(§)=0
即f'(§)+2f(§)=0

希望对楼主有帮助~~