以下翻译请审阅,如还需翻译请联系。
To evaluate the dynamic performance of PMLSM drive, the AFC applied in position control loop of Fig. 1
is tested. 为了评价PMLSM驱动器的动态性能,对用于图1位置控制环中的AFC(自动频率控制)进行了试验。The transfer function of the reference model is chosen by a second order system with the natural frequency of 20 rad/s and the damping ratio of 1. 参考模型的传递函数通过一个二阶系统来选择,此二阶系统具有20 rad/s的固有频率和1的阻尼比。 The step response is firstly tested to evaluate the performance of the proposed controller.先测试阶跃响应,以评价所提出控制器的性能。Figure 8 shows the position step responses of the moving part of the linear motor under payload of 0 Kg and 3 Kg using FC when the position command is 1.667Hz square wave signal with 5mm amplitude. 图8示出了当位置指令是幅值为5 mm的1.667Hz的方波时,采用FC(模糊控制)线性电机在0 kg和3 kg有效载荷下移动零件的位置阶跃响应。The fuzzy rule table is adequately selected in the case of without any payload, so the step response in Fig. 8(a) is a good dynamic response with a rising time of 90ms, no overshoot and a near-zero steady state. 模糊规则表在没有任何有效载荷情况下适当选择,因此图8(a)中的阶跃响应是上升时间为90 ms,没有超调和接近零的稳态的、良好的动态响应。However, when a 3 kg payload is added and the same fuzzy rule and controller parameters are used, the position dynamic response worsens and exhibits a 10.4% overshoot and a little oscillation in Fig. 8(b).然而,当加上一个3 kg的有效载荷,同时采用相同的模糊规则和控制器参数时,该位置动态响应就变差,并在图8(b)中呈现出10.4%的超调和一些振荡。 It reveals that the dynamic performance of PMLSM is affected by a variation in the external payload. 它揭示了,PMLSM的动态性能受到外来有效载荷变化的影响。Accordingly, the AFC is adopted in Fig. 1 to solve with this problem. 因此,在图1中采用了AFC,以解决这一问题。Figures 9~10 show the experimental results with and without the proposed AFC under the effect of 3Kg and 6Kg payload, respectively. 图9和图10分别示出了在3 kg和6 kg有效载荷影响下,用和不用提出的AFC时的实验结果。Figures 9(a) and 10(a) show a poorer dynamic response with overshoot and oscillation when only the FC is used.图9(a)和图10(a)示出了,当只用FC时,比较差的、带有超调和振荡的动态响应。 However, when the AFC is adopted, the dynamic responses are improved and presented in Figs. 9(b) and 10(b). 然而,当采用AFC时,动态响应得到了改善,结果示于图9(b)和图10(b)。Second, the frequency response is considered to evaluate the performance of the proposed controller. 其次,频率响应被考虑用来评价所提出的控制器的性能。A tested input signal of the sinusoid wave with 10 mm amplitude and a frequency of 1.667Hz is provided. 提供的被测输入信号为幅值10 mm、频率1.667 Hz的正弦波。In this design, the frequency tracking response and the tracking error of the moving part of the PMLSM with and without the proposed AFC are shown n Figs. 11 and 12, which reveal that the ±0.35 mm amplitude tracking error obtained using AFC after one period time is better than the ±2 mm tracking error obtained using only FC. 在本设计中,用和不用所提出的AFC时,PMLSM的移动零件的频率跟踪响应和跟踪误差示于图11和图12,它们揭示了,采用AFC在一个周期时间后得到的±0.35 mm幅值的跟踪误差,要优于只用FC所获得的±2 mm的跟踪误差。Therefore, from Figs. 8 to 12, those results demonstrate that the proposed servo control IC using SoPC technology for PMLSM drive is因此,从图8到图12,那些结果证明了,所提出的、采用SoPC(系统级可编程芯片)技术的、用于PMLSM驱动器的伺服控制IC是……
To evaluate the dynamic performance of PMLSM
drive, the AFC applied in position control loop of Fig. 1
is tested. The transfer function of the reference model is
chosen by a second order system with the natural
frequency of 20 rad/s and the damping ratio of 1. The
step response is firstly tested to evaluate theperformance of the proposed controller. Figure 8 shows
the position step responses of the moving part of the
linear motor under payload of 0 Kg and 3 Kg using FC
when the position command is 1.667Hz square wave
signal with 5mm amplitude. The fuzzy rule table is
adequately selected in the case of without any payload,
so the step response in Fig. 8(a) is a good dynamic
response with a rising time of 90ms, no overshoot and a
near-zero steady state. However, when a 3 kg payload is
added and the same fuzzy rule and controller parameters
are used, the position dynamic response worsens and
exhibits a 10.4% overshoot and a little oscillation in Fig.
8(b). It reveals that the dynamic performance of
PMLSM is affected by a variation in the external
payload. Accordingly, the AFC is adopted in Fig. 1 to
solve with this problem. Figures 9~10 show the
experimental results with and without the proposed
AFC under the effect of 3Kg and 6Kg payload,
respectively. Figures 9(a) and 10(a) show a poorer
dynamic response with overshoot and oscillation when
only the FC is used. However, when the AFC is adopted,
the dynamic responses are improved and presented in
Figs. 9(b) and 10(b). Second, the frequency response is
considered to evaluate the performance of the proposed
controller. A tested input signal of the sinusoid wave
with 10 mm amplitude and a frequency of 1.667Hz is
provided. In this design, the frequency tracking
response and the tracking error of the moving part of the
PMLSM with and without the proposed AFC are shown
in Figs. 11 and 12, which reveal that the ±0.35 mm
amplitude tracking error obtained using AFC after one
period time is better than the ±2 mm tracking error
obtained using only FC. Therefore, from Figs. 8 to 12,
those results demonstrate that the proposed servo
control IC using SoPC technology for PMLSM drive is
评估动态性能的永磁直线同步电动机
驱动器,适用于亚足联的位置控制回路的图。 1
测试。传递函数的参考模型
选择二阶系统与自然
频率为20弧度/ S和阻尼比1 。那个
阶跃响应是首先测试评价theperformance提议的控制器。图8显示
阶跃响应的位置的移动部分
直线电机载荷下○公斤和3公斤使用俱乐部
当命令的立场是1.667Hz方波
信号与5毫米振幅。的模糊规则表
充分选择的情况下没有任何有效载荷,
所以阶跃响应图。第8 ( a )是一个很好的动态
响应上升时间90ms ,没有过冲和
接近零稳态。然而,当一个3公斤的有效载荷是
补充和相同的模糊规则和控制器参数
使用的位置和动态响应恶化
展品为10.4 %和有点过头振荡图。
第8 ( b ) 。这表明,动态性能
永磁直线同步电动机是受外部变化
有效载荷。因此,亚足联是通过图。 1至
解决这一问题。 9 〜 10的数字显示,
实验结果与不建议
根据亚足联的影响三千克和6公斤有效载荷,
分别。图9 ( a )项和第10 ( a )显示穷
动态响应,时过冲和振荡
只有俱乐部使用。然而,当亚足联通过,
动态答复中提出的改进和
无花果。 9 ( b )和10 ( b )项。其次,是频率响应
审议,以评估执行情况的建议
控制器。经过测试输入信号的血窦波
与10毫米幅度和频率1.667Hz是
提供。在此设计,频率跟踪
响应和跟踪误差的移动部分
永磁直线同步电动机与不建议亚足联显示
在图。 11日和12日,这表明, ± 0.35毫米
振幅跟踪误差获得亚足联后使用
期间时间优于± 2毫米跟踪误差
只使用队获得。因此,从图。 8日至12日,
这些结果表明,该伺服
控制IC采用SOPC的技术,永磁直线同步电动机驱动器
评估动态性能的永磁直线同步电动机
驱动器,适用于亚足联的位置控制回路的图。 1
测试。传递函数的参考模型
选择二阶系统与自然
频率为20弧度/ S和阻尼比1 。那个
阶跃响应是首先测试评价theperformance提议的控制器。图8显示
阶跃响应的位置的移动部分
直线电机载荷下0千克和3公斤使用俱乐部
当命令的立场是1.667Hz方波
信号与5毫米振幅。的模糊规则表
充分选择的情况下没有任何有效载荷,
所以阶跃响应图。第8 ( a )是一个很好的动态
响应上升时间90ms ,没有过冲和
接近零稳态。然而,当一个3公斤的有效载荷是
补充和相同的模糊规则和控制器参数
使用的位置和动态响应恶化
展品为10.4 %和有点过头振荡图。
第8 ( b ) 。这表明,动态性能
永磁直线同步电动机是受外部变化
有效载荷。因此,亚足联是通过图。 1至
解决这一问题。 9 〜 10的数字显示,
实验结果与不建议
根据亚足联的影响3千克和六公斤有效载荷,
分别。图9 ( a )项和第10 ( a )显示穷
动态响应,时过冲和振荡
只有俱乐部使用。然而,当亚足联通过,
动态答复中提出的改进和
无花果。 9 ( b )和10 ( b )项。其次,是频率响应
审议,以评估执行情况的建议
控制器。经过测试输入信号的血窦波
与10毫米幅度和频率1.667Hz是
提供。在此设计,频率跟踪
响应和跟踪误差的移动部分
永磁直线同步电动机与不建议亚足联显示
在图。 11日和12日,这表明, ± 0.35毫米
振幅跟踪误差获得亚足联后使用
期间时间优于吨± 2毫米的跟踪误差
只使用队获得。因此,从图。 8日至12日,
这些结果表明,该伺服
控制IC采用SOPC的技术,永磁直线同步电动机驱动器
I don·t know!
不懂!