数学中十进制是什么意思??????

请解释得详细一点!
2024-12-13 00:32:34
推荐回答(3个)
回答1:

首先,现在人们日常生活中所不可或离的十进位值制,就是中国的一大发明。至迟在商代时,中国已采用了十进位值制。从现已发现的商代陶文和甲骨文中,可以看到当时已能够用一、二、三、四、五、六、七、八、九、十、百、千、万等十三个数字,记十万以内的任何自然数。这些记数文字的形状,在后世虽有所变化而成为现在的写法,但记数方法却从没有中断,一直被沿袭,并日趋完善。十进位值制的记数法是古代世界中最先进、科学的记数法,对世界科学和文化的发展有着不可估量的作用。正如李约瑟所说的:“如果没有这种十进位制,就不可能出现我们现在这个统一化的世界了。”
古巴比仑的记数法虽有位值制的意义,但它采用的是六十进位的,计算非常繁琐。古埃及的数字从一到十只有两个数字符号,从一百到一千万有四个数字符号,而且这些符号都是象形的,如用一只鸟表示十万。古希腊由于几何发达,因而轻视计算,记数方法落后,是用全部希腊字母来表示一到一万的数字,字母不够就用加符号“‘”等的方法来补充。古罗马采用的是累积法,如用ccc表示300。印度古代既有用字母表示,又有用累积法,到公元七世纪时方采用十进位值制,很可能受到中国的影响。现通用的印度——阿拉伯数码和记数法,大约在十世纪时才传到欧洲。
在计算数学方面,中国大约在商周时期已经有了四则运算,到春秋战国时期整数和分数的四则运算已相当完备。其中,出现于春秋时期的正整数乘法歌诀“九九歌”,堪称是先进的十进位记数法与简明的中国语言文字相结合之结晶,这是任何其它记数法和语言文字所无法产生的。从此,“九九歌”成为数学的普及和发展最基本的基础之一,一直延续至今。其变化只是古代的“九九歌”从“九九八十一”开始,到“二二如四”止,而现在是由“一一如一”到“九九八十一”。
[编辑本段]十进制的使用
《卜辞》中记载说,商代的人们已经学会用一、二、三、四、五、六、七、八、九、十、百、千、万这13个单字记十万以内的任何数字,但是现在能够证实的当时最大的数字是三万。甲骨卜辞中还有奇数、偶数和倍数的概念。
十进位位值制记数法包括十进位和位值制两条原则,"十进"即满十进一;"位值"则是同一个数位在不同的位置上所表示的数值也就不同,如三位数"111",右边的"1"在个位上表示1个一,中间的"1"在十位上就表示1个十,左边的"1"在百位上则表示1个百。这样,就使极为困难的整数表示和演算变得如此简便易行,以至于人们往往忽略它对数学发展所起的关键作用。
我们有个成语叫"屈指可数",说明古代人数数确实是离不开手指的,而一般人的手指恰好有十个。因此十进制的使用似乎应该是极其自然的事。但实际情况并不尽然。在文明古国巴比伦使用的是60进位制(这一进位制到现在仍留有痕迹,如一分=60秒等)另外还有采用二十进位制的。古代埃及倒是很早就用10进位制,但他们却不知道位值制。所谓位值制就是一个数码表示什么数,要看它所在的位置而定。位值制是千百年来人类智慧的结晶。零是位值制记数法的精要所在。但它的出现却并非易事。我国是最早使用十进制记数法,且认识到进位制的国家。我们的口语或文字表达的数字也遵守这一原则,比如一百二十七。同时我们对0的认识最早。
十进制是中国人民的一项杰出创造,在世界数学史上有重要意义。著名的英国科学史学家李约瑟教授曾对中国商代记数法予以很高的评价,"如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了",李约瑟说"总的说来,商代的数字系统比同一时代的古巴比伦和古埃及更为先进更为科学。"
十进位汉字对照表
100 一
101 十
102 百
103 千
104 万
105 十万
106 百万(兆[2])
107 千万
108 亿
109 十亿(吉)
1010 百亿
1011 千亿
1012 兆(万亿、太[2])
1013 十兆
1014 百兆
1015 千兆(拍)
1016 京
1017 十京
1018 百京(艾)
1019 千京
1020 垓
1021 十垓(泽)
1022 百垓
1023 千垓
1024 秭(尧)
1025 十秭
1026 百秭
1027 千秭
1028 穰
1029 十穰
1030 百穰
1031 千穰
1032 沟
1033 十沟
1034 百沟
1035 千沟
1036 涧
1037 十涧
1038 百涧
1039 千涧
1040 正
1041 十正
1042 百正
1043 千正
1044 载
1045 十载
1046 百载
1047 千载
1048 极
1049 十极
1050 百极
1051 千极
1052 恒河沙
1053 十恒河沙
1054 百恒河沙
1055 千恒河沙
1056 阿僧只
1057 十阿僧只
1058 百阿僧只
1059 千阿僧只
1060 那由他
1061 十那由他
1062 百那由他
1063 千那由他
1064 不可思议
1065 十不可思议
1066 百不可思议
1067 千不可思议
1068 无量
1069 十无量
1070 百无量
1071 千无量
1072 大数
1073 十大数
1074 百大数
1075 千大数
1076
1077
1078
1079
1080
1081
...... ......
10100 古戈尔
(goo-
gol)
...... ......
1010100 古戈尔
普勒克斯
(goo-
golplex)
十退制汉字对照表
100 一
10-1 分
10-2 厘
10-3 毫
10-4 丝
10-5 忽
10-6 微
10-7 纤
10-8 沙
10-9 尘(奈、纳[2])
10-10 埃
10-11 渺
10-12 漠(皮)
10-13 模糊
10-14 逡巡
10-15 须臾(飞)
10-16 瞬息
10-17 弹指
10-18 刹那(阿)
10-19 六德
10-20 空虚
10-21 清静(仄)
10-22 阿赖耶
10-23 阿摩罗
10-24 涅盘寂静(攸)
注:
厘亦作厘。
毫亦作毛。
漠是正确写法,而莫并非正确写法。
比漠微细的,是自天竺的佛经上的数字。而这些「佛经数字」已成为「古代用法」了。
------------
补充:
十进制,英文名称为Decimal System,来源于希腊文Decem,意为十。十进制计数是由印度教教徒在1500年前发明的,有阿拉伯人传承至11世纪。
十进制基于位进制和十进位两条原则,即所有的数字都用10个基本的符号表示,满十进一,同时同一个符号在不通位置上所表示的数值不同,符号的位置非常重要。基本符号是0到9十个数字。要表示这十个数的10倍,就将这些数字左移一位,用0补上空位,即10,20,30,...,90;要表示这十个数的10倍,就继续左移数字的位置,即100,200,300,...。要表示一个数的1/10,就右移这个数的位置,需要时就0补上空位:1/10位0.1,1/100为0.01,1/1000为0.001。--摘自《统计学》附录3 数学基础知识P205-6 [英]提姆.汉拿根 2008.1

回答2:

就是逢十进一 解释下 每个位上的数到9以后就最大了 再大的话 就在上一位进1 比如89 个位最大了是9了 而再加1的话 不能写成810 而应该把1加到8上

回答3:

就是到十进一位嘛