请大家帮忙解答一道高一数学题.很急,谢谢了.

2024-12-29 23:19:44
推荐回答(1个)
回答1:

第一问:

假设数列{Sn/n}是等比数列,则有:
Sn/n=(s1/1)*q^(n-1)
=a1*q^(n-1)
=q^(n-1)

代入an+1=n+2Sn/n可得到:
an+1=n+nq^(n-1)。。。。。。(1)

只要求的q为定值,第一问就得到证明。

由等式an+1=n+2Sn/n,可到a2=3,a3=6...(2)

由(1)可得到a3=2+2q.......(3)

(2)、(3)可求得q=2,为定值得证。

第二问:

从第一问中,我们得到:sn=n*2^(n-1);
则有:sn-1=(n-1)*2^(n-2)
sn+1=(n+1)*2^n......(4)

根据数列公式:an=sn-sn-1=n*2^(n-1)-(n-1)*2^(n-2)
=2^(n-2)*[n*2-(n-1)]
=2^(n-2)*(n+1)
所以要证明的等式右边=4an=2^n*(n+1)=(4)=左边,得证。