有12个球,其中11个重量相等,只有1个不一样,不知是轻还是重.用天平秤三次,找出这个球.

2025-02-01 23:54:51
推荐回答(3个)
回答1:

用无码天平称乒乓球的重量,每称一次会有几种结果?有三种不同的结果,即左边的重量重于、轻于或者等于右边的重量,为了做到 称三次就能把这个不合格的乒乓球找出来,必须把球分成三组(各为四只球)。现在,我们为了解题的方便,把这三组乒乓球分别编号为 A组、B组、C组。

首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况:

第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。

其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:

1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。

称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。

2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。

称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。

以上是第一次称之后出现第一种情况的分析。

第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。

我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。

这时,可以称第二次了。这次称后可能出现的是三种情况:

1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。

这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。

2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3之中。这是因为已交换的B2、A2、A3个球并未影响轻重,可见这三只球都是好球。

以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。

3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。

以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。

回答2:

先随便拿出来4个。剩下的8个4个4个撑量。要是天平平衡了就在拿出来的4个里。要是有偏转就在2份中的1份。在把那份的4个 2个2个称就OK了

这个问题,看似简单,其实相当复杂,下面是抄来的答案:

把12个球编成1,2......12号,则可设计下面的称法:

左盘 *** 右盘

第一次 1,5,6,12 *** 2,3,7,11

第二次 2,4,6,10 *** 1,3,8,12

第三次 3,4,5,11 *** 1,2,9,10

每次都可能有平、左重、右重三种结果,搭配起来共有27种结果,但平、平、平的结果不会出现,因为总有一个球是不相等的。同样左、左、左,右、右、右的结果也不回出现,因为根据设计的称法,没有一个球是三次都在左边或右边的。剩下的24种结果就可以判断出哪种情况是哪一个球了。例如:如果结果是平、平、左或是平、平、右,就可判断出是9号球,因为第一次与第二次都没有9号球,唯独第三次有9号球,而第一次与第二次都是平的,只有第三次是失衡的,说明9号球的重量与其它的球不同。可依据此原理判断出其它的各种情况分别是哪个球。

有12个球,而坏球又可能比好球轻也可能比好球重,所以总共有12x2=24种可能,24可能结果如下表:
************ ********** ************ **********
* 可 能 * -* 结 果 * * 可 能 *-* 结 果 *
************ ********** ************ **********
1号球,且重 -左、右、右 1号球,且轻 -右、左、左
2号球,且重 -右、左、右 2号球,且轻 -左、右、左
3号球,且重 -右、右、左 3号球,且轻 -左、左、右
4号球,且重 -平、左、左 4号球,且轻 -平、右、右
5号球,且重 -左、平、左 5号球,且轻 -右、平、右
6号球,且重 -左、左、平 6号球,且轻 -右、右、平
7号球,且重 -右、平、平 7号球,且轻 -左、平、平
8号球,且重 -平、右、平 8号球,且轻 -平、左、平
9号球,且重 -平、平、右 9号球,且轻 -平、平、左
10号球,且重-平、左、右 10号球,且轻-平、右、左
11号球,且重-右、平、左 11号球,且轻-左、右、平
12号球,且重-左、右、平 12号球,且轻-左、右、平

上面的24种结果里面没有一个重复的,也可以把上面的结果反过来当成可能,也可唯一的推出那个球为坏球,证明此方法可行。

回答3:

不用这么复杂吧