高斯
1785年,8岁的高斯在德国农村的一所小学里念一年级。
学校的老师是城里来的。他有一个偏见,觉得农村的孩子不如城市的孩子聪明伶俐。不过,他对孩子们的学习,还是严格要求。他讨厌在课堂上不专心听讲、爱做小动作的学生,常常用鞭子敲打他们。孩子们到爱听他的课,因为他经常讲一些非常有趣的东西。
有一天,他出了一道算术题:“你们算一算,1加2加3......加100等于多少?谁算不出来,就不准回家吃饭。” 说完,他就坐在椅子上,用目光巡视着趴在桌上演算的学生。
不到一分钟,小高斯站了起来,手里举着小石板,说:“老师,我算出来了......”
没等小高斯说完,老师就不耐烦的说:“不对!重新再算!”
小高斯检查了一遍,说:“老师,没错!”说着走下座位,把小石板伸到老师面前。
老师低头一看,只见上面写着“5050”,不禁大吃一惊。他简直不敢相信,这样复杂的数学题,一个8岁的孩子,用不到一分钟的时间庆闷就算出了正确的得数。要知道,他自己算了一个多小时,算了三遍才把这道题算对的。他怀疑以前别人让小高斯算过这道题。就问小高斯:“你是怎么算的?”小高斯回答说:“我不是按照1、2、3的次序一个一个往上加的。是一头一尾的两个数相加:1+100=101,2+99=101,3+98也是101......一前一后的数相加,一共有50个101,101乘50,得到5050。”
小高斯的回答使老师感到吃惊。因为他还是第一次知道这种算法。他惊喜的看着小高斯,好像刚认识这个穿破烂的衣服的,砌转工人的儿子。
不久,老师专门买了一本数学书送给小高斯,鼓励他继续努力,还把小高斯推荐给教育局,使他得到免费教育的待遇。后来,小高斯成了世界著名的数学家。 人们为了纪念他,把他的这种计算方法称为“高斯定理”。
阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有并纯良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:22/7 <π<223/71 ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其绝差咐面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
刘徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.
《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.
刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.
刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.
欧拉
欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家。生于瑞士的巴塞尔,卒于彼得堡(Petepbypt)。父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶。但父亲却执意让他攻读神学,以便将来接他的班。幸运的是,欧拉并没有走父亲为他安排的路。父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(Johann Bernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有几分情谊。由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼尔(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家)。他俩经常给小欧拉讲生动的数学故事和有趣的数学知识。这些都使欧拉受益匪浅。1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉。当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课。约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来。他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手。在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路。1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。
欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。
尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(J.L.Lagrange,1736.1.25-1813.4.10)。
欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作。他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛顿(I.Newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式:
又把三角函数与指数函联结起来。
在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号。如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,用 ∑表示求和,用 i表示虚数等。圆周率π虽然不是欧拉首创,但却是经过欧拉的倡导才得以广泛流行。而且,欧拉还把e 、π 、i 统一在一个令人叫绝的关系式 中。 欧拉在研究级数时引入欧拉常数C, 这是继π 、e 之后的又一个重要的数。
希尔伯特
希尔伯特,D.(Hilbert,David,1862~1943)德国数学家,生于东普鲁士哥尼斯堡(前苏联加里宁格勒)附近的韦劳。中学时代,希尔伯特就是一名勤奋好学的学生,对于科学特别是数学表现出浓厚的兴趣,善于灵活和深刻地掌握以至应用老师讲课的内容。1880年,他不顾父亲让他学法律的意愿,进入哥尼斯堡大学攻读数学。1884年获得博士学位,后来又在这所大学里取得讲师资格和升任副教授。1893年被任命为正教授,1895年,转入格廷根大学任教授,此后一直在格廷根生活和工作,于是930年退休。在此期间,他成为柏林科学院通讯院士,并曾获得施泰讷奖、罗巴切夫斯基奖和波约伊奖。1930年获得瑞典科学院的米塔格-莱福勒奖,1942年成为柏林科学院荣誉院士。希尔伯特是一位正直的科学家,第一次世界大战前夕,他拒绝在德国政府为进行欺骗宣传而发表的《告文明世界书》上签字。战争期间,他敢干公开发表文章悼念"敌人的数学家"达布。希特勒上台后,他抵制并上书反对纳粹政府排斥和迫害犹太科学家的政策。由于纳粹政府的反动政策日益加剧,许多科学家被迫移居外国,曾经盛极一时的格廷根学派衰落了,希尔伯特也于1943年在孤独中逝世。
冯·诺依曼
20世纪即将过去,21世纪就要到来.我们站在世纪之交的大门槛,回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".
约翰·冯·诺依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对 孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古 希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年成为该校终身教授.1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生. 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大 学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席.
1954年夏,冯·诺依曼被使现患有癌症,1957年2月8日,在华盛顿去世,终年54岁.
冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、鼻子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在 1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题.
1933年,冯·诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的. 他对其子代数进行了开创性工作,并莫定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯·诺依曼代数.这是有限维空间中矩阵代数的自然推广. 冯·诺依曼还创立了博奕论这一现代数学的又一重要分支. 1944年发表了奠基性的重要论文《博奕论与经济行为》.论文中包含博奕论的纯粹数学形式的阐述以及对于实际博奕应用的详细说明.文中还包含了诸如统计理论等教学思想.冯·诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作.
冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术和数值分析的开拓性工作.
现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接见天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进.
冯·诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945年,他们在共同讨论的基础上,发表了一个全新的"存储程序通用电子计算机方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写).在这过程中,冯·诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力.
EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.EDVAC机还有两个非常重大的改进,即:(1)采用了二进制,不但数据采用二进制,指令也采用二进制;(2建立了存储程序,指令和数据便可一起放在存储器里,并作同样处理.简化了计算机的结构,大大提高了计算机的速度.
1946年7,8月间,冯·诺依曼和戈尔德斯廷、勃克斯在EDVAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股"计算机热",它们的综合设计思想,便是著名的"冯·诺依曼机",其中心就是有存储程序原则--指令和数据一起存储.这个概念被誉为'计算机发展史上的一个里程碑".它标志着电子计算机时代的真正开始,指导着以后的计算机设计.自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到"冯·诺依曼机"的不足,它妨碍着计算机速度的进一步提高,而提出了"非冯·诺依曼机"的设想.
冯·诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献. 冯·诺依曼于1937年获美国数学会的波策奖;1947年获美国总统的功勋奖章、美国海军优秀公民服务奖;1956年获美国总统的自由奖章和爱因斯坦纪念奖以及费米奖.
冯·诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要著作收集在六卷《冯·诺依曼全集》中,1961年出版.
泰勒斯
泰勒斯(Thales,前624-前547),古希腊学者,出生在小亚细亚的米利都城的一个奴隶主贵族家庭。家庭政治地位的显贵、经济生活的富足,泰勒斯均不屑一顾,而是倾注全部精力从事哲学与科学的钻研。在年轻时,他四处游学,到过金字塔之国,在那里学会了天文观测、几何测量;也到过两河流域的巴比伦,饱学了东方璀灿的文化。回到家乡米利都后,创立了爱奥学派,后成为古希腊著名的七大学派之首。泰勒斯素有“科学之父”的美称。
泰勒斯有名名言:“水是万物之本源,万物终归于水。”他否定了神创造一切的观点,开创了从世界本身来认识世界的正确道路。在科学上,他倡导理性,不满足于直观的感性的特殊的认识,崇尚抽象的理性的一般的知识。譬如,等腰三角形的两底角相等,并不是指我们所能画出的、个别的等腰三角形,而应该是指“所有的”等腰三角形。这就需要论证、推理,才能确保数学命题的正确性,才能使数学具有理论上的严密性和应用上的广泛性。泰勒斯的积极倡导,为毕达哥拉斯创立理性的数学奠定了基础。
泰勒斯在数学方面曾发现了不少平面几何学的定理,诸如:“直径平分圆周”、“三角形两等边对等角”、“两条直线相交、对顶角相等”、“三角形两角及其夹边已知,此三角形完全确定”、“半圆所对的圆周角是直角”等,这些定理虽然简单,而且古埃及、巴比伦人也许早已知道,但是,泰勒斯把它们整理成一般性的命题,论证了它们的严格性,并在实践中广泛应用。据说他可以利用一根标杆,测量、推算出金字塔的高度。
泰勒斯在天文学方面也曾有不同凡响的工作,据说他曾测知公元前585年5月28日的一次日全食。当时正值战争之际,泰勒斯向世人宣告,若不停战,到时天神震怒!到了那天下午,两派将士仍激战不已,霎时间,太阳在天空中消失,星辰闪烁,大地一片漆黑。双方将士见此景象,砍太阳神真的发怒了,要降罪于人类,于是立即罢兵休战,从此铸剑为犁,和睦相处。
另据传说,泰勒斯醉心于钻研哲学与科学,且可谓清贫守道,而遭市井嘲笑。他不以为然地说,君子爱财取之有道。他在对气候预测的基础上,估计来年油料作物会大丰收,于是垄断了米利都和开奥斯两地的所有油坊,到季节以高价出租。有了钱,科学研究可以做得更好。
这两则传说,如果是真实的话,那么泰勒斯确实不愧于其墓碑上所镌刻的颂辞:“他是一位圣贤,又是一位天文学家,在日月星辰的王国里,他顶天立地、万古流芳。”不过,这也是一则传说,因为泰勒斯生活的年代离我们太久远了,没有确切可靠的资料。
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
欧几里得
欧几里得,(约公元前330-275年),古希腊数学家。其著作《几何原本》闻名于世。欧几里得将公元前七世纪以来希腊几何积累起来的既丰富又纷纭的庞杂结果整理在一个严密统一的体系中,从原始定义开始,列出5条公设,通过逻辑推理,演绎出一系列定理和推论,从而建立了被称为欧几里得几何学的第一个公理化数学体系。
据资料记载,有统治者问他学几何有无简捷的方法,他回答:“在几何里,没有来为国王铺设的大道”。这句话后来成了传诵于古的学习箴言。他的著作除《几何原本》外,还有不少,可惜大都失传,《已知数》、《圆形的分割》是保存下来的著作。
李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。
朱世杰:《四元玉鉴》
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、陆李日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)
华罗庚
“数学,如音乐一样,以奇才辈出而著称,这些人即便没有受过正规的教育也才华横溢。虽然华罗庚谦虚地避免使用奇才这个词,但它却恰当地描述了这位杰出的中国数学家。” --G·B·Kolata
华罗庚是一个传奇式的人物,是一个自学成才的数学家。
他1910年11月12日出生于江苏省金坛县一个城市贫民的家庭,1985年6月12日,中国数学届陨灭一颗巨星-华罗庚在日本讲学时不幸因心肌梗塞逝世了。
华罗庚是蜚声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守与多复便函数等多方面研究的创始人与开拓者。他的著名学术论文《典型域上的多元复变函数论》,由于应用了前人没有用过的方法,在数学领域内做了开拓性的工作,于1957年荣获我国科学一等奖。他研究的成果被国际数学界命名为“华氏定理”,“布劳威尔-加当-华定理”。华罗庚一生精勤不倦,奋斗不息,著作很多,研究领域很广。他共发表学术论文约二百篇,专著有《堆垒素数论》、《高等数学引论》、《指数和的估计及其在数论中的应用》、《典型群》、《多复变数函数论中的典型域的分析》、《数论引导》、《数值积分及其应用》、《从单位圆谈起》、《优选法》、《二阶两个自变数两个未知函数的常系数偏微分方程》、《华罗庚论文庆饥选集》等12部。
名师与高徒——陈省生和丘成桐
当今世界数坛,设有两项奖励,可谓举世瞩目,堪于诺贝尔奖相比.一项是在国际数学家大会颁发的菲尔兹(Fields)奖,这项奖只授予不超过40岁的年轻数学家;一项是由以色列沃尔夫基金会于1978年颁发的沃尔夫奖;每奖10万美元(数目最初于诺贝尔奖接近),授予当代最大的数学家.
1983年,旅美中国年轻数学家丘成桐教授荣获沃尔夫大奖,而他的老师美籍中国数学家陈省身教授则获沃尔夫大奖.
陈省身教授是美国科学院院士,1975年美国国家科学奖获得者,当代世界最有影响的数学家之一,现代微分几何的奠基人.
陈省身1911年10月26日出生于浙江省嘉兴县,陈省身教授是国际数学届整体微分几何研究的领导人物.
他1931年在清华大学研究发表的第一篇研究论文,其题材就是有关"投影微分几何"的.
他写的积分几何,把希拉克学派的积分几何工作推到了更高的阶段.
陈省身对当时数学界知之甚少的示性类理论很感兴趣.1945年他发现复流上有反映复结构特征的不变量,后来被命名为陈省身示性类是微分几何学、代数几何学、复解析几何学中最重要的不变量。“它的应用及于整个数学及理论物理”。(沃尔夫奖评语)魏伊说:“示性类的概念被陈的工作整个地改观了。”陈省身因建立代数拓补与微分几何的联系,推进了整体几何的发展彪炳于数学史册。
在将近半个世纪里,陈省身教授在微分几何研究中,取得了一系列丰硕的成果,其最突出的有:(1)关于卡勒(誉悉返Kahleian)G结构的同调和形式的分解定理:(2)欧几里得空间中闭子流的全曲率和紧嵌入的理论;(3)满足几何条件的子流形成唯一性定理;(4)积分几何中的运动公式。(5)他同格里菲恩(P.Griffiths)关于网上几何(Web geometry)的工作使这方面获得新生命,最近的发展(I.Gelfand,R.Mcpherson);(6)他同莫泽(J.Moser)关于CR-流形的工作最近多复变函数论进展的基础;(7)他同西蒙斯(J.Simons)的特征式是量子力学异常(anomaly)现象的基本数学工具;(8)他同沃尔夫森(J.Wolfson)关于调和映射的工作是整体微分几何的一个问题,在理论物理有重要应用.1959年他在芝加哥大学所撰写的《微分几何》是一部经典名著。
丘成桐1949年4月4日出生在广东省,不久他们全家移居香港,1976年,年仅27岁的丘成桐就解决了微分几何中的一个著名难题-“卡拉比猜想”。卡拉比猜想的解决,使丘成桐成为数学天空新升起的一颗名星,他除解决了卡拉比猜想外,他还解决了许多停多年毫无进展的问题,例如:(1)正质猜想,(2)实与复的蒙日-安培方程。(3)丘成桐的一系列文章对某些紧流形(或有边界的流型)上的拉普拉斯算子的第一特征值,以及其它的特征值都作了深刻的估计。(4)丘成桐和肖荫堂合作,利用极小曲面对弗兰克尔猜想给出一个漂亮的证明,也就是证明了完备的单连通的、具有正的全纯截面曲率的恺勒流形与一个复射空间双全纯等价;(5)丘成桐和米斯克利用三维流形的拓补方法解决极小曲面的经典理论中一些老问题。反过来,他们利用极小曲面理论得出三维拓补学的一些结果:得恩引理和等变环圈定理及等球定理等。
由于丘成桐的出色成就,他1981年获美国数学颁发的维布伦奖,1983年,他在华沙举行的国际数学家大会上荣获菲尔兹奖是当之无愧的.
吴文俊
数学家。1919年5月12日生于上海市。1940年毕业于上海交通大学。1947年赴法国留学。在巴黎法国国家科学研究中心进行数学研究,1949年获法国国家科学博士学位。1951年回国。1957年被聘选为中国科学院院士(学部委员)。历任北京大学数学系教授,中国科学院数学研究所研究员及副所长,中国科学院系统科学研究所研究员及副所长、名誉所长、数学机械化研究中心主任。曾任中国数学会理事长、名誉理事长,中国科学院数学物理学部副主任、主任等职。 吴文俊主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人,为中国数学研究和科学事业的发展作出了重要贡献。1952年刊印出版的博士论文《球纤维示性类》是对球纤维理论基本问题的重要贡献。从40年代起示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名著。这方面成果曾获1956年度国家自然科学奖(中国科学院自然科学奖金)一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为“吴方法”),实现了初等几何与微分几何定理的机器证明,居于世界领先地位。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获1978年全国数学大会重大成果奖和1980年中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面,以及代数几何、中国数学史、对策论等研究中也作出了重要贡献。
杨乐
数学家。1939年11月10日生于江苏南通。1956年考入北京大学数学系,1962年毕业,同年考取中国科学院数学研究所研究生,1966年研究生毕业后留所工作。曾任中国科学院数学研究所所长、中国数学会秘书长、理事长。现任中国科学院数学研究所研究员、学术委员会主任。1980年当选为中国科学院院士(学部委员)。 杨乐在函数模分布论、辐角分布论、正规族等领域,以其众多极富创造性的重要贡献,20年来一直站在世界最前列,是国际上的领头数学家之一。 一、对整函数、亚纯函数的亏值、亏量函数进行了深入研究 与张广厚合作在亚纯函数的亏值数目与Borel方向数目间首次建立了密切联系;在引进亏函数后,给出有穷下级亚纯函数总亏量的估计,从而证明了其亏函数是可数的;给出亚纯函数结合于导数的总亏量的估计,彻底解决了著名学者D.Drasin70年代提出的3个问题。 二、对正规族作了系统研究,获得了一些新的重要的正规定则 杨乐建立了正规族与不动点之间的联系正规族与微分多项式之间的联系,解决了著名学者W.K.Hayman提出的一个正规族问题等。 三、对整函数和亚纯函数的辐角分布进行了系统、深入的研究 杨乐研究在亚纯函数涉及的导数的辐角分布时,获得了一种新型的奇异方向;对辐角分布与重值间的关系得到了深入的结果;完全刻划了亚纯函数Borel方向的分布规律;与Hayman合作解决了Littlewood的一个猜想。 杨乐的上述各项重要研究成果受到国内外同行的高度评价与许多引用,他所得到的亏量关系,被国外学者称为“杨乐亏量关系‘等。
刘徽】中国古代数学家,魏晋时期山东人
个人简介
魏晋时期山东人,出生在公元3世纪20年代后期。据《隋书·律历志》称:“魏陈留王景元四年(263)刘徽注《九章》”。他在长期精心研究《九章算术》的基础上,采用高理论,精计算,潜心为《九章》撰写注解文字。他的注解内容详细、丰富,并纠正了原书流传下来的一些错误,更有大量新颖见解,创造了许多数学原理并严加证明,然后应用于各种算法之中,成为中国传统数学理论体系的奠基者之一。如他说:“徽幼习《九章》,长再详览。观阴阳之割裂,总算术之根源,探赜之暇,遂悟其意。是以敢竭顽鲁,采其所见,为之作注”。又说:“析理以辞,解体用图。庶亦约而能周,通而不黩,览之者思过半矣。”他除为《九章》作注外,还撰写过《重差》一卷,唐代改称为《海岛算经》。他的主要贡献在于创造了割圆术,运用极限观念计算圆面积和圆周率;创造十进分数、小单位数及求微数思想;定义许多重要数学概念,强调“率”的作用;运用直角三角形性质建立并推.广重差术,形成特有的准确测量方法;提出“刘徽原理”,形成直线型立体体积算法的理论体系,在例证方面,他采用模型、图形、例题来论证或推广有关算法,加强说服力和应用性,形成中国传统数学风格;他采用严肃、认真、客观的精神,差别粗糙、错误的论述,创造精细、有逻辑的观点,以理服人,为后世学人树立良好的学风;在等差、等比级数方面也有一些涉及和创意。经他注释的《九章算术》影响、支配中国古代数学的发展1000余年,是东方数学的典范之一,与希腊欧几里得(约前330-275)的《原本》所代表的古代西方数学交相辉映。
刘徽从事数学研究时,中国创造的十进位记数法和计算工具“算筹”已经使用一千多年了。在世界各种各样的记数法中,十进位记数法是最先进、最方便的。中国古代数学知识的结晶“九章算术”也成书三百多年了。“九章算术”反映的是中国先民在生产劳动、丈量土地和测量容积等实践活动中所创造的数学知识,包括方田、粟米、哀分、少广、商功、均输、盈不足、方程、勾股九章,是中国古代算法的基础,它含有上百个计算公式和246个应用问题,有完整的分数四则运算法则,比例和比例分配算法,若干面积、体积公式,开平方、开立方程序,方程术--线性方程组解法,正负数加减法则,解勾股形公式和简单的测望问题算法。其中许多成就处于世界领先地位。公元元年前年,盛极一时的古希腊数学走向衰微,“九章算术”的出现,标志着世界数学研究中心从地中海沿岸转到了中国,开创了东方以应用数学为中心占据世界数学舞台主导地位千余年的局面。在编排上,“九章算术”或者先提出术文(命题),后列出几个例题,或者先列出一个或几个例题,后提出术文。然而它对所用的概念没有定义,对所有的术文没作任何推导证明,个别的公式尚有不精确或失误之处。东汉以后的许多学者都研究过“九章算术”,但理论建树不大。刘徽著作的“九章算术注”,主要是给“九章算术”的术文作解释和逻辑证明,更正其中的个别错误公式,使后人在知其然的同时又知其所以然。有了刘徽的注释,“九章算术”才得以成为一部完美的古代数学教科书。
在“九章算术注”中,刘徽发展了中国古代“率”的思想和“出入相补”原理。用“率”统一证明“九章算术”的大部分算法和大多数题目,用“出入相补”原理证明了勾股定理以及一些求面积和求体积公式。为了证明园面积公式和计算园周率,刘徽创立了割园术。在这徽之前人们曾试图证明它,但是不严格。刘徽提出了基于极限思想的割园术,严谨地证明了园面积公式。他还用无穷小分割的思想证明了一些锥体体积公式。在计算园周率时,刘徽应用割园术,从园内接正六边形出发,依次计算出园内接正12边形、正24边形、正48边形,直到园内接正192边形的面积,然后使用现在称之为的“外推法”,得到了园周率的近似值3.14,纠正了前人“周三径一”的说法。“外推法”是现代近似计算技术的一个重要方法,刘徽遥遥领先于西方发现了“外推法”。刘徽的割园术是求园周率的正确方法,它奠定了中国园周率计算长期在世界上领先的基础。据说,祖冲之就是用刘徽的方法将园周率的有效数字精确到7位。在割园过程中,要反复用到勾股定理和开平方。为了开平方,刘徽提出了求“微数”的思想,这与现今无理根的十进小数近似值完全相同。求微数保证了计算园周率的精确性。同时,刘徽的微数也开创了十进小数的先河。
刘徽治学态度严肃,为后世树立了楷模。在求园面积公式时,在当时计算工具很简陋的情况下,他开方即达12位有效数字。他在注释“方程”章节18题时,共用1500余字,反复消元运算达124次,无一差错,答案正确无误,即使作为今天大学代数课答卷亦无逊色。刘徽注“九章算术”时年仅30岁左右。北宋大观三年(1109)刘徽被封为淄乡男。
冯·诺伊曼(1903-1957)美国数学家。生于匈牙利。早年以集合论和数学基础的工作著称,二次大战中参与同反法西斯战争有关的各项科学计划,担任过制造原子弹的顾问。他的科学足迹遍及纯粹数学、应用数学、力学、经济学、气象学、理论物理学、计算机科学及脑科学、他的成就相当于30年科学发展史的概要。他集中研究纯粹数学,涉及到集合论公理系统、元数学、冯·诺伊曼代数算子环等,解决了希尔伯特第五问题,对量子力学加以公理化。1940年他由纯粹数学家转为应用数学家,并应召参与许多重要军事科学计划和工程项目,帮助设计了原子弹的最佳结构,研究空气动力学,转向航空技术。二战后期,他开始计算机研究,在电子计算机逻辑体制中引入代码,编制各种程序,把崭新的科学思想付诸实践,是第一台电子计算机ANIAC诞生的催产师。现代计算机许多基本设.计中都带有他的思想标记。冯·诺伊曼还创立了对策论,抛弃传统的经典力学方法处理经济问题,而代之以新颖的策略思想和组合工具。晚年则致力于自动机理论,意识到计算机和人脑机制的某种类似,为人工智能研究打下了基础。
图灵,英国数学家。早年兴趣集中在"可计算数"上,他的理论奠定了计算机科学理论的基础。二次大战时,图灵奉召到英国外交部通讯部所属的密码学校从事破译工作,他领导的数学家,语言学家和计算人员共同研制了一种快速计算机,能高速分析密码--各种可能的组合。图灵的理想计算机的思想导致了世界上第一台数字式专用"巨人"电子计算机的研制成功,也为二次大战的最后胜利建立了不朽功勋。大战结束后,图灵致力于研制大型电子计算机,写出了计算机总体设计方案,包含了仿真系统、子程序和子程序库、错误自检系统、机器自动编译程序等。图灵在机器智能方面做出了许多开创性的工作。并论述了智能机器的可能性,以他特有的理论彻底性对包括智能计算机在内的所有机器作了严密的分类,把数学计算机分为"有组织的"和"无组织的",两大类。图灵一生的工作覆盖了几个重要领域:数理逻辑、群论、破译码机、计算机、机器智能,并做出了巨大的贡献,他还对与生命起源有密切关系的"形态发生"的化学理论进行了可贵的探索。他的独创性和预见性愈来愈受到人们的敬佩。
笛卡儿(René Descartes 1596~1650),出生于法国,父亲是法国一个地方法院的评议员,相当于现在的律师和法官。一岁时母亲去世,给笛卡儿留下了一笔遗产,为日后他从事自己喜爱的工作提供了可靠的经济保障。8岁时他进入一所耶稣会学校,在校学习8年,接受了传统的文化教育,读了古典文学、历史、神学、哲学、法学、医学、数学及其他自然科学。在学校读书时,校长特许笛卡儿每天早晨在床上读书思考,养成了“晨思”的习惯,一直保持到晚年。笛卡儿后来回忆说,这所学校是“欧洲最著名的学校之一”,但他对所学的东西颇感失望。因为在他看来教科书中那些微妙的论证,其实不过是模棱两可甚至前后矛盾的理论,只能使他顿生怀疑而无从得到确凿的知识,惟一给他安慰的是数学。在结束学业时他暗下决心:不再死钻书本学问,而要向“世界这本大书”讨教。于是1612年到巴黎的普瓦捷大学攻读法学,4年后获博士学位。1618年从军,到过荷兰、丹麦、德国。1621年回国,正值法国内乱,又去荷兰、瑞士、意大利旅行,1625年返巴黎。由于笛卡儿曾独立解决了几道公开征答的数学难题而使他结交了许多科学界的朋友,使他对自己的数学与科学的能力有了信心,于是他决定避开战争,远离社交活动频繁的都市,寻找一处适于研究的环境。1628年,他从巴黎移居荷兰,开始了长达20年的潜心研究和写作生涯,先后发表了许多在数学和哲学上有重大影响的论著。1649年冬,应邀为瑞典女王克里斯蒂娜(1626-1689)讲课,因生活习惯被破坏,数月后患肺炎逝世。(16年后,遗骨运回巴黎)。他的著作在生前就遭到教会指责,死后又被梵蒂冈教皇列为禁书,但这并没有阻止他的思想的传播。
笛卡儿是欧洲近代哲学的创始人之一。黑格尔称他为“现代哲学之父”,恩格斯称他为“辩证法的卓越代表”。同时笛卡儿又是一勇于探索的科学家,在物理学、生理学等领域都有值得称道的创见,特别是在数学上他创立了解析几何,从而打开了近代数学的大门,在科学史上具有划时代的意义。
在笛卡儿之前,几何与代数是数学中两个不同的研究领域。笛卡儿站在方法论的自然哲学的高度,认为希腊人的几何学过于依赖于图形,束缚了人的想象力。对于当时流行的代数学,他觉得它完全从属于法则和公式,不能成为一门改进智力的科学。因此他担出必须把几何与代数的优点结合起来,建立一种“真正的数学”。笛卡儿的思想核心是:把几何学的问题归结成代数形式的问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的。依照这种思想他创立了我们现在称之为的“解析几何学”。笛卡儿的具体作法是:引进坐标的概念,建立平面上的点与数对的对应关系;从解决几何作图的问题入手,担出用代数方程表示几何曲线的方法;用求解代数方程的根,解决几何作图问题。用这种办法,笛卡尔轻而易举地解决了古典几何学家用纯几何方法没解决的问题。沿着用代数方程研究几何典线的思路,笛卡儿还得到了一系列新颖的想法与结果。最为可贵的是,笛卡儿用运动的观点,把曲线看成点的运动的轨迹,不仅建立了点与实数的对应关系,而且把形(包括点、线、面)和“数”两个对立的对象统一起来,建立了典线和方程的对应关系。这种对应关系的建立,不仅标志着函数概念的萌芽,而且标明变数进入了数学,使数学在思想方法上发生了伟大的转折--由常量数学进入变量数学的时期。笛卡儿的这些成就,为后来牛顿、莱布尼兹发现微积分,为一大批数学家的新发现开辟了道路。笛卡儿的主要数学成果集中在他的“几何学”中。值得指出的是,在“几何学”中,笛卡儿根据问题特点选用他的坐标轴系,这是一种斜坐标系,没有出现过标准的现在称为笛卡儿坐标的直角坐标系,后者是由杰出的德国哲学家和数学家G.W.莱布尼茨引入的。
高斯
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。
1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。
希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:
一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…
费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是悉运庆质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:
任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出睁握自己的见解,他一生中一共给出了四个不同的证明。
在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。
这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。
数学家的故事——苏步青
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他悄汪在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心
数学家的墓志铭
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
华罗庚
1910年11月12日,华罗庚生于江苏省金坛县。他家境贫穷,决心努力学习。上中学时,在一次大掘数学课上,老师给同学们出了一道著名的难题:“有一个数,3个3个地数,还余2;5个5个地数,还余3;7个7个地数,还余2,请问这个得数是多少?”大家正在思考时,华罗庚站起来说:“23”他的回答使老师惊喜不已,并得到老师的表扬。从此,他喜欢上了数学。
华罗庚上完初中一年级后,因家境贫困而失学了,只好替父母站柜台,但他仍然坚持自学数学。经过自己不懈的努力,他的《苏家驹之代数的五次方程式解法不能成余仿拿立的理由》论文,被清华大学数学系主任熊庆来教授发现,邀请他来清华大学;华罗庚被聘为大学教师,这在清华大学的历史上是破天荒的事情。
1936年夏,已经是杰出数学家的华罗庚,作为访问学者在英国剑桥大学工作两年。而此时抗日的消息传遍英国,他怀着强烈的爱国热忱,风尘仆仆地回到祖国,为西南联合大学讲课。
华罗庚十分注意数学方法在工农业生产中的直接应用。他经常深入工厂进行指导,进行数学应用普及工作,并编写了科普读物。
华罗庚也为青年树立了自学成才的光辉榜样,他是一位自学成才、没有大学毕业文凭的数学家。他说:“不怕困难,刻苦竖搭学习,是我学好数学最主要的经验”,“所谓天才就是靠坚持不断的努
数学家小时候的故事——高斯
2004-12-22 16:54:07 网络 阅读1622次
印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。
高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,闹基仔却是值得我们学习与效法的。
2、大海边的阿基米德
2005-5-29 18:21:39 来 源:《中国校外教育》 网络资源 阅读517次
阿基米德11岁那年,离开了父母,来到了古希腊最大的城市之一的亚历山大里亚求学。当时的亚历山大里亚是世界闻名的贸易和文化交流中心,城中图书馆异常丰富的藏书,深深地吸引着如饥似渴的阿基米德。
当时的书是订在一张张的羊皮上的,也有用莎草茎剖成薄片压平后当作纸,订成后粘成一大张再卷在圆木棍上。那时没有发明印刷术,书是一个字一个字抄成的,十分宝贵。阿基米德没有纸笔,就把书本上学到的定理和公式,一点一点地牢记在脑子里。阿基米德攻读的是数学,需要画图形、推导公式、进行演算。没有纸,就用小树枝当笔,把大地当纸,因为地面太硬,写上去的字迹看不清楚,阿基米德苦想了几天,又发明了一种"纸",他把炉灰扒出来,均匀锋戚地铺在地面上,然后在上面演算。可是有时天公不作美,风一刮,这种"纸"就飞了。
一天,阿基米德来到海滨散步,他一边走一边思考着数学问题。无边无垠的沙滩,细密而柔软的沙粒平平整整地铺展在脚下,又伸向远方。他习惯地蹲下来,顺手捡起一个贝壳,便在沙滩上演算起来,又好又便捷。回到住地,阿基米德十分兴奋地告诉他的朋友们说:"沙滩,我发现沙滩是最好的学习地方,它是那么广阔,又是那么安静,你的思想可以飞翔到很远的地方,就象是飞翔在海面上的海鸥一样。"神奇的沙滩、博大的海洋,给人智慧,给人力量。打那以后,阿基米德喜欢在海滩上徜洋徘徊,进行思考和学习。从求学的少年时代开始一直保持到生命的最后一息。公元前212年,罗马军队攻占了阿基米德的家乡叙拉古城。当时,已75岁高龄的阿基米德正在沙滩上聚精会神地演算数学,对于敌军的入侵竟丝毫未觉察。当罗马士兵拔出剑来要杀他的时候,阿基米德安静地说:"给我留下一些时间,让我把这道还没有解答完的题做完,免得将来给世界留下一道尚未证完的难题。"
� 由于阿基米德孜孜不倦、刻苦钻研,终于成为古希腊伟大的数学家、物理学家、天文学家和发明家,后人将他与牛顿、欧拉、高斯并称为"数坛四杰"、"数学之神"。我国数学泰斗华罗庚说:"天才在于积累。聪明在于勤奋。"面对知识的大海,人们应该象阿基米德那样,信念是罗盘,执著和勇毅作双浆,不懈追求,毕生探索。扬帆远航!
3、国际象棋发明人的报酬
2004-11-23 11:40:32 选自《 数海钩沉——世界数学名题选辑》 作者:高希尧 阅读419次
这是印度的一个古老传说,舍罕王打算重赏象棋发明人、宰相西萨·班·达依尔。这位聪明的大臣的胃口看来并不大,他跪在国液汪王面前说:
‘陛下,请您在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,第三格内给四粒,用这样下去,每一小格内都比前一小格加一倍。陛下,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧!’
‘爱卿,你所求的并不多啊。”国王说道,心里为自己对这样一件奇妙的发明赏赐的许诺不致破费太多而暗喜。“你当然会如愿以偿的,”国王命令如数付给达依尔。
计数麦粒的工作开始了,第一格内放1粒,第二格内放2粒第三格内放2’粒,…还没有到第二十格,一袋麦子已经空了。一袋又一袋的麦子被扛到国王面前来。但是,麦粒数一格接一格飞快增长着,国王很快就看出,即便拿全印度的粮食,也兑现不了他对达依尔的诺言。
原来,所需麦粒总数
1+2+2^2+2^3+2^4+……+2^63=2^64-1 =18446744073709551615。
这些麦子究竟有多少?打个比方,如果造一个仓库来放这些麦子,仓库高4公尺,宽10公尺,那么仓库的长度就等于地球到太阳的距离的两倍。而要生产这么多的麦子,全世界要两千年。尽管印度舍罕王非常富有,但要这样多的麦子他是怎么也拿不出来的。这么一来,舍罕王就欠了宰相好大一笔债。要么是忍受达依尔没完没了的讨债,要么是干脆砍掉他的脑袋。结果究竟如何,可惜史书上没有记载。
从这个故事中,不难看出,印度古代对等比级数已有相当的研究。
类似印度“国际象棋发明人的报酬”问题还出现在别的国度。十八世纪初期,俄国马格尼茨的《算术》一书中的“卖马’问题,就与“国际象棋发明人的报酬”相类似,有异曲同工之妙。
“卖马”原题如下:
某人卖马一匹,得钱156卢布。但是买主买到马以后又懊悔了,要把马退还给卖主,他说这匹马根本不值这么多钱。于是卖主向买主提出了另一种计算马价的方案说,如果你嫌马太贵了,那末就只买马蹄上的钉子好了,马就算白送给你。每个马蹄铁上有6枚钉子,第一枚钉子只卖1/4个戈比(1卢布等于100戈比),第二枚卖半个戈比,第三枚一个戈比,后面每个钉子价格依此类椎。买主认为钉子的价值总共也花不了10个卢布,还能白得一匹好马,于是就欣然同意丁。结果买主算账后才明白上当。试问买主在这笔交易中要亏损多少?