具体分析及计算过程
2.1 画信号流图
信号流图如图2 – 1 所示
G1 (s) = 4 ,G2 (s) = 10 ,
G3 (s) = 2.0 / (0.0.25 s+1) , G4 (s) = 2.5 / s(0.1 s+1)
图2 – 1 小功率随动系统信号流图
2.2 求闭环传递函数
系统的开环传递函数为
G(s) = G1 (s) G2 (s) G3 (s) G4 (s)
= 200 / s (0.025 s + 1 ) (0.1 s + 1)
= 200 / ( 0.0025 s3 + 0.125 s2 + s )
则系统的闭环传递函数为
Ф = 200 / ( 0.0025 s3 + 0.125 s2 + s + 200 )
求开环系统的截至频率
G(s) = 200 / s (0.025 s + 1 ) (0.1 s + 1)
相应的频率特性表达式为
G(jω) = 200 / jω (0.025 jω + 1 ) (0.1 jω + 1)
由|G(jω)|= 1 可得截止频率 ωc = 38 s-1
求相角裕度
将ωc = 38 s-1带入G(jω),可得
相角裕度γ= 180°+(0°- 90°- arctan1/0.95- arctan1/3.8)=-28.3°
求幅值裕度
令G(jω)的虚部等于0.可得穿越频率ωx=20 s-1
此时,G(jω)=A(ω)=0.0833,则幅值裕度h=1/ A(ω)=12
设计串联校正装置
绘制未校正系统的对数幅频特性,程序如下
num=200;
den=[0.0025,0.125,1,0];
sys=tf(num,den);
[mag,phase,w]=bode(num,den);
[gm,pm,wcg,wcp]=margin(mag,phase,w);
margin(sys)
未校正系统的对数幅频特性如图2 – 2 所示,其低频特性已满足期望特性要求
图2 – 2 未校正系统的对数幅频特性
计算期望特性中频段的参数:
ωc ≥ (6 ~ 8)/ts = (6 ~ 8)/ 0.5 = 12 ~ 16(rad s-1)
h ≥ σ+64 / σ- 16 =25 + 64 / 25- 16 = 9.89
取ωc = 20 rad s-1 ,h = 10。
计算ω2 ,ω3 :
ω2 = 2ωc /h+1=≅ 2ωc / h = 2×20 / 10 = 4
ω3 = 2hωc / h + 1 ≅ 2 × 20 = 40
由此可画出期望特性的中频段,如图2 – 3所示。
根据期望对数频率特性设计方法,可以画出期望对数幅频特性曲线,如图2 – 3。
图2 – 3 期望对数幅频特性曲线
将L ( ω )减去L 0( ω )(纵坐标相减)即得L c( ω ),L c( ω )即为系统中所串进的校正装置的对数幅频特性,如图2 – 4 所示。
图2 – 4 校正装置的对数幅频特性
根据其形状特点,可写出校正装置的传递函数为
Gc(s) = ( 0.25s + 1 ) ( 0.1s + 1 ) / ( 2.5s + 1 ) ( 0.01s + 1 )
要获得上式所描述的传递函数,既可用无源校正网络实现,又可用有源校正网络实现。
采用无源滞后------超前网络
无源滞后------超前网络如图2 – 5
图2 – 5 无源滞后------超前网络
其传递函数Gc(s)=(( T1 s + 1 ) ( T2 s + 1 ))/(( T1 s / β + 1 ) ( βT2s + 1 ))
比较上式与校正装置的传递函数可得
T2 s = R2 C2 = 0.25 , βT2 = 2.5
T1 s = R1 C1 = 0.1 , T1 / β = 0.01
如选C1 =0.33μF,C2=5μF,则可算得
R1=0.1/0.33×10-6=3000kΩ
R2=0.25/5×10-6=50 kΩ
系统校正后的结构图如图2 – 6 所示
图2 – 6 系统校正后的结构图
采用有源校正网络
由于运算放大器组成的有源校正网络同时兼有校正和放大作用,故图2 – 7 中的电压放大和串联校正两个环节可以合并,且由单一的有源网络实现。如图2 – 7 所示的网络中,当R5≫R3时,导出的传递函数为
G ( s ) = - Z2 ( Z2 + Z4 ) / Z1 Z4 )
式中,
Z 1 = R1 ;Z2 = R 5 + R 2 / R 2 C 1 s + R2
Z 3 = R3 ;Z4 = R 4 + 1/ C 2 s
再经一级倒相后,网络的传递函数可表示成
G(s)=(R2+R5)/R1 (R2R5/(R2+R5) C1s+1)/(R2C1s+1) ((R3+R4)C2s+1)/(R4C2s+1)
图2 – 7 有源校正网络
电压放大与校正环节合并后的传递函数为
10 Gc(s)=10×( 0.25s + 1 ) ( 0.1s + 1 ) / ( 2.5s + 1 ) ( 0.01s + 1 )
比较以上两式,并选C1=10μF, C2=20μF,则可求得校正网络的参数如下:
R 2 C 1=2.5,故R 2=250kΩ
R 4 C 2=0.01,故R 4=500kΩ
(R 3+ R 4)C2=0.1, 故R 3=4.5kΩ
R2R5/(R2+R5) C1= 0.25,故R 5=28kΩ
(R2+R5)/R1=10,故R 1=28kΩ
取R 0=R 1=28kΩ。则系统校正后的结构图如图2 – 8 所示。
图2 – 8 系统校正后的结构图
3绘制校正前后系统的bode图
3.1 绘制未校正系统的对数幅频特性
未校正系统的对数幅频特性如图2 – 2。程序如下
num=200;
den=[0.0025,0.125,1,0];
sys=tf(num,den);
[mag,phase,w]=bode(num,den);
[gm,pm,wcg,wcp]=margin(mag,phase,w);
margin(sys)
3.2 绘制校正系统的对数幅频特性
校正系统的对数幅频特性,如图2 – 3 。程序如下
num=[0.025,0.35,1];
den=[0.025,2.51,1];
sys=tf(num,den);
[mag,phase,w]=bode(num,den);
[gm,pm,wcg,wcp]=margin(mag,phase,w);
margin(sys)
3.3 绘制校正后系统的对数幅频特性
校正后系统的对数幅频特性如图2 – 4 。程序如下:
num=[50,200];
den=[0.000625,0.08775,2.535,1,0];
sys=tf(num,den);
[mag,phase,w]=bode(num,den);
[gm,pm,wcg,wcp]=margin(mag,phase,w);
margin(sys)
课程设计的资料应该有。
http://www.jxcad.com.cn/?u=594287
注册--搜索“自动控制原理”
里面有许多,我也不知道你需要那些,不过现成的好像没看见,你可能需要修改下。
你先去看看吧,找到那篇,不能下你再给我发消息,我帮你下。
你是自动化的吗,我是自动化专业的.
正好我们也要写,这个星期天交
我写完发给你
E-mail:biyangka@tom.com
课程设计的资料应该有。
http://www.jxcad.com.cn/?u=594287
你什么题目?我们做了 有存档