有关太阳系的资料

有关太阳系的资料
2024-10-29 14:06:02
推荐回答(5个)
回答1:

太阳系的领域包括太阳,4颗像地球的内行星,由许多小岩石组成的小行星带,4颗充满气体的巨大外行星,充满冰冻小岩石,被称为柯伊伯带的第二个小天体区。在柯伊伯带之外还有黄道离散盘面和太阳圈,和依然属于假设的奥尔特云。
依照至太阳的距离,行星序是水星、金星、地球、火星、木星、土星、天王星、和海王星,8颗中的6颗有天然的卫星环绕着,这些星习惯上因为地球的卫星被称为月球而都被视为月球。在外侧的行星都有由尘埃和许多小颗粒构成的行星环环绕着,而除了地球之外,肉眼可见的行星以五行为名,在西方则全都以希腊和罗马神话故事中的神仙为名。三颗矮行星是冥王星,柯伊伯带内最大的天体之一,谷神星,小行星带内最大的天体,和属于黄道离散天体的阋神星。
概述和轨道
太阳系内天体的轨道太阳系的主角是位居中心的太阳,它是一颗光谱分类为G2V的主序星,拥有太阳系内已知质量的99.86%,并以引力主宰著太阳系。木星和土星,太阳系内最大的两颗行星,又占了剩余质量的90%以上,目前仍属于假说的奥尔特云,还不知道会占有多少百分比的质量。
太阳系内主要天体的轨道,都在地球绕太阳公转的轨道平面(黄道)的附近。行星都非常靠近黄道,而彗星和柯伊伯带天体,通常都有比较明显的倾斜角度。
由北方向下鸟瞰太阳系,所有的行星和绝大部分的其他天体,都以逆时针(右旋)方向绕着太阳公转。有些例外的,像是哈雷彗星。
环绕着太阳运动的天体都遵守开普勒行星运动定律,轨道都以太阳为椭圆的一个焦点,并且越靠近太阳时的速度越快。行星的轨道接近圆型,但许多彗星、小行星和柯伊伯带天体的轨道则是高度椭圆的。
在这么辽阔的空间中,有许多方法可以表示出太阳系中每个轨道的距离。在实际上,距离太阳越远的行星或环带,与前一个的距离就会更远,而只有少数的例外。例如,金星在水星之外约0.33天文单位的距离上,而土星与木星的距离是4.3天文单位,海王星又在天王星之外10.5天文单位。曾有些关系式企图解释这些轨道距离变化间的交互作用,但这样的理论从未获得证实。
形成和演化
艺术家笔下的原行星盘
太阳系的形成据信应该是依据星云假说,最早是在1755年由康德和1796年由拉普拉斯各自独立提出的。这个理论认为太阳系是在46亿年前在一个巨大的分子云的塌缩中形成的。这个星云原本有数光年的大小,并且同时诞生了数颗恒星。研究古老的陨石追溯到的元素显示,只有超新星爆炸的心脏部分才能产生这些元素,所以包含太阳的星团必然在超新星残骸的附近。可能是来自超新星爆炸的震波使邻近太阳附近的星云密度增高,使得重力得以克服内部气体的膨胀压力造成塌缩,因而触发了太阳的诞生。
被认定为原太阳星云的地区就是日后将形成太阳系的地区,直径估计在7,000至20,000天文单位,而质量仅比太阳多一点(多0.1至0.001太阳质量)。当星云开始塌缩时,角动量守恒定律使它的转速加快,内部原子相互碰撞的频率增加。其中心区域集中了大部分的质量,温度也比周围的圆盘更热。当重力、气体压力、磁场和自转作用在收缩的星云上时,它开始变得扁平成为旋转的原行星盘,而直径大约200天文单位,并且在中心有一个热且稠密的原恒星。
对年轻的金牛T星的研究,相信质量与预熔合阶段发展的太阳非常相似,显示在形成阶段经常都会有原行星物质的圆盘伴随着。这些圆盘可以延伸至数百天文单位,并且最热的部分可以达到数千K的高温。
一亿年后,在塌缩的星云中心,压力和密度将大到足以使原始太阳的氢开始热融合,这会一直增加直到流体静力平衡,使热能足以抵抗重力的收缩能。这时太阳才成为一颗真正的恒星。
相信经由吸积的作用,各种各样的行星将从云气(太阳星云)中剩余的气体和尘埃中诞生:
·当尘粒的颗粒还在环绕中心的原恒星时,行星就已经开始成长;
·然后经由直接的接触,聚集成1至10公里直径的丛集;
·接着经由碰撞形成更大的个体,成为直径大约5公里的星子;
·在未来得数百万年中,经由进一步的碰撞以每年15厘米的的速度继续成长。
在太阳系的内侧,因为过度的温暖使水和甲烷这种易挥发的分子不能凝聚,因此形成的星子相对的就比较小(仅占有圆盘质量的0.6%),并且主要的成分是熔点较高的硅酸盐和金属等化合物。这些石质的天体最后就成为类地行星。再远一点的星子,受到木星引力的影响,不能凝聚在一起成为原行星,而成为现在所见到的小行星带。
在更远的距离上,在冻结线之外,易挥发的物质也能冻结成固体,就形成了木星和土星这些巨大的气体巨星。天王星和海王星获得的材料较少,并且因为核心被认为主要是冰(氢化物),因此被称为冰巨星。
一旦年轻的太阳开始产生能量,太阳风会将原行星盘中的物质吹入行星际空间,从而结束行星的成长。年轻的金牛座T星的恒星风就比处于稳定阶段的较老的恒星强得多。
根据天文学家的推测,目前的太阳系会维持直到太阳离开主序。由于太阳是利用其内部的氢作为燃料,为了能够利用剩余的燃料,太阳会变得越来越热,于是燃烧的速度也越来越快。这就导致太阳不断变亮,变亮速度大约为每11亿年增亮10%。
从现在起再过大约76亿年,太阳的内核将会热得足以使外层氢发生融合,这会导致太阳膨胀到现在半径的260倍,变为一个红巨星。此时,由于体积与表面积的扩大,太阳的总光度增加,但表面温度下降,单位面积的光度变暗。
随后,太阳的外层被逐渐抛离,最后裸露出核心成为一颗白矮星,一个极为致密的天体,只有地球的大小却有着原来太阳一半的质量。
[编辑本段]结构和组成
太阳系是由受太阳引力约束的天体组成的系统是宇宙中的一个小天体系统,
太阳系的结构可以大概地分为五部分:
太阳
太阳是太阳系的母星,也是最主要和最重要的成员。它有足够的质量让内部的压力与密度足以抑制和承受核融合产生的巨大能量,并以辐射的型式,例如可见光,让能量稳定的进入太空。太阳在赫罗图上的位置
太阳在分类上是一颗中等大小的黄矮星,不过这样的名称很容易让人误会,其实在我们的星系中,太阳是相当大与明亮的。恒星是依据赫罗图的表面温度与亮度对应关系来分类的。通常,温度高的恒星也会比较明亮,而遵循此一规律的恒星都会位在所谓的主序带上,太阳就在这个带子的中央。但是,但是比太阳大且亮的星并不多,而比较暗淡和低温的恒星则很多。
太阳在恒星演化的阶段正处于壮年期,尚未用尽在核心进行核融合的氢。太阳的亮度仍会与日俱增,早期的亮度只是现在的75%。
计算太阳内部氢与氦的比例,认为太阳已经完成生命周期的一半,在大约50亿年后,太阳将离开主序带,并变得更大与更加明亮,但表面温度却降低的红巨星,届时它的亮度将是目前的数千倍。
太阳是在宇宙演化后期才诞生的第一星族恒星,它比第二星族的恒星拥有更多的比氢和氦重的金属(这是天文学的说法:原子序数大于氦的都是金属。)。比氢和氦重的元素是在恒星的核心形成的,必须经由超新星爆炸才能释入宇宙的空间内。换言之,第一代恒星死亡之后宇宙中才有这些重元素。最老的恒星只有少量的金属,后来诞生的才有较多的金属。高金属含量被认为是太阳能发展出行星系统的关键,因为行星是由累积的金属物质形成的。
行星际物质
除了光,太阳也不断的放射出电子流(等离子),也就是所谓的太阳风。这条微粒子流的速度为每小时150万公里,在太阳系内创造出稀薄的大气层(太阳圈),范围至少达到100天文单位(日球层顶),也就是我们所认知的行星际物质。 太阳的黑子周期(11年)和频繁的闪焰、日冕物质抛射在太阳圈内造成的干扰,产生了太空气候。伴随太阳自转而转动的磁场在行星际物质中所产生的太阳圈电流片,是太阳系内最大的结构。
地球的磁场从与太阳风的互动中保护著地球大气层。水星和金星则没有磁场,太阳风使它们的大气层逐渐流失至太空中。 太阳风和地球磁场交互作用产生的极光,可以在接近地球的磁极(如南极与北极)的附近看见。
宇宙线是来自太阳系外的,太阳圈屏障著太阳系,行星的磁场也为行星自身提供了一些保护。宇宙线在星际物质内的密度和太阳磁场周期的强度变动有关,因此宇宙线在太阳系内的变动幅度究竟是多少,仍然是未知的。
行星际物质至少在在两个盘状区域内聚集成宇宙尘。第一个区域是黄道尘云,位于内太阳系,并且是黄道光的起因。它们可能是小行星带内的天体和行星相互撞击所产生的。第二个区域大约伸展在10-40天文单位的范围内,可能是柯伊伯带内的天体在相似的互相撞击下产生的。

内太阳系
内太阳系在传统上是类地行星和小行星带区域的名称,主要是由硅酸盐和金属组成的。这个区域挤在靠近太阳的范围内,半径还比木星与土星之间的距离还短。
内行星所有的内行星
四颗内行星或是类地行星的特点是高密度、由岩石构成、只有少量或没有卫星,也没有环系统。它们由高熔点的矿物,像是硅酸盐类的矿物,组成表面固体的地壳和半流质的地幔,以及由铁、镍构成的金属核心所组成。四颗中的三颗(金星、地球、和火星)有实质的大气层,全部都有撞击坑和地质构造的表面特征(地堑和火山等)。内行星容易和比地球更接近太阳的内侧行星(水星和金星)混淆。行星运行在一个平面,朝着一个方向
水星
水星(Mercury)(0.4 天文单位)是最靠近太阳,也是最小的行星(0.055地球质量)。它没有天然的卫星,仅知的地质特征除了撞击坑外,只有大概是在早期历史与收缩期间产生的皱折山脊。 水星,包括被太阳风轰击出的气体原子,只有微不足道的大气。目前尚无法解释相对来说相当巨大的铁质核心和薄薄的地幔。假说包括巨大的冲击剥离了它的外壳,还有年轻时期的太阳能抑制了外壳的增长。
金星
金星 (Venus)(0.7 天文单位)的体积尺寸与地球相似(0.86地球质量),也和地球一样有厚厚的硅酸盐地幔包围着核心,还有浓厚的大气层和内部地质活动的证据。但是,它的大气密度比地球高90倍而且非常干燥,也没有天然的卫星。它是颗炙热的行星,表面的温度超过400°C,很可能是大气层中有大量的温室气体造成的。没有明确的证据显示金星的地质活动仍在进行中,但是没有磁场保护的大气应该会被耗尽,因此认为金星的大气是经由火山的爆发获得补充。
地球
地球(Earth)(1 天文单位)是内行星中最大且密度最高的,也是维一地质活动仍在持续进行中并拥有生命的行星。它也拥有类地行星中独一无二的水圈和被观察到的板块结构。地球的大气也于其他的行星完全不同,被存活在这儿的生物改造成含有21%的自由氧气。它只有一颗卫星,即月球;月球也是类地行星中唯一的大卫星。地球公转(太阳)一圈约365天,自转一圈约1天。(太阳并不是总是直射赤道,因为地球围绕太阳旋转时,稍稍有些倾斜。)
火星
火星(Mars)(1.5 天文单位)比地球和金星小(0.17地球质量),只有以二氧化碳为主的稀薄大气,它的表面,例如奥林匹斯山有密集与巨大的火山,水手号峡谷有深邃的地堑,显示不久前仍有剧烈的地质活动。火星有两颗天然的小卫星,戴摩斯和福伯斯,可能是被捕获的小行星。
小行星带
小行星的主带和特洛伊小行星 小行星是太阳系小天体中最主要的成员,主要由岩石与不易挥发的物质组成。
主要的小行星带位于火星和木星轨道之间,距离太阳2.3至3.3 天文单位,它们被认为是在太阳系形成的过程中,受到木星引力扰动而未能聚合的残余物质。
小行星的尺度从大至数百公里、小至微米的都有。除了最大的谷神星之外,所有的小行星都被归类为太阳系小天体,但是有几颗小行星,像是灶神星、健神星,如果能被证实已经达到流体静力平衡的状态,可能会被重分类为矮行星。
小行星带拥有数万颗,可能多达数百万颗,直径在一公里以上的小天体。尽管如此,小行星带的总质量仍然不可能达到地球质量的千分之一。小行星主带的成员依然是稀稀落落的,所以至今还没有太空船在穿越时发生意外。
直径在10至10-4 米的小天体称为流星体。
谷神星
谷神星 (Ceres)(2.77 天文单位)是主带中最大的天体,也是主带中唯一的矮行星。它的直径接近1000公里,因此自身的引力已足以使它成为球体。它在19世纪初被发现时,被认为是一颗行星,在1850年代因为有更多的小天体被发现才重新分类为小行星;在2006年,又再度重分类为矮行星。
小行星族
在主带中的小行星可以依据轨道元素划分成几个小行星群和小行星族。小行星卫星是围绕着较大的小行星运转的小天体,它们的认定不如绕着行星的卫星那样明确,因为有些卫星几乎和被绕的母体一样大。
在主带中也有彗星,它们可能是地球上水的主要来源。
特洛依小行星的位置在木星的 L4或L5点(在行星轨道前方和后方的不稳定引力平衡点),不过"特洛依"这个名称也被用在其他行星或卫星轨道上位于拉格朗日点上的小天体。 希耳达族是轨道周期与木星2:3共振的小行星族,当木星绕太阳公转二圈时,这群小行星会绕太阳公转三圈。
内太阳系也包含许多“淘气”的小行星与尘粒,其中有许多都会穿越内行星的轨道。
中太阳系
太阳系的中部地区是气体巨星和它们有如行星大小尺度卫星的家,许多短周期彗星,包括半人马群也在这个区域内。此区没有传统的名称,偶尔也会被归入"外太阳系",虽然外太阳系通常是指海王星以外的区域。在这一区域的固体,主要的成分是"冰"(水、氨和甲烷),不同于以岩石为主的内太阳系。
外行星
所有的外行星 在外侧的四颗行星,也称为类木行星,囊括了环绕太阳99%的已知质量。木星和土星的大气层都拥有大量的氢和氦,天王星和海王星的大气层则有较多的“冰”,像是水、氨和甲烷。有些天文学家认为它们该另成一类,称为“天王星族”或是“冰巨星”。这四颗气体巨星都有行星环,但是只有土星的环可以轻松的从地球上观察。“外行星”这个名称容易与“外侧行星”混淆,后者实际是指在地球轨道外面的行星,除了外行星外还有火星。
木星
木星(Jupiter)(5.2 天文单位),主要由氢和氦组成,质量是地球的318倍,也是其他行星质量总合的2.5倍。木星的丰沛内热在它的大气层造成一些近似永久性的特征,例如云带和大红斑。木星已经被发现的卫星有63颗,最大的四颗,甘尼米德、卡利斯多、埃欧、和欧罗巴,显示出类似类地行星的特征,像是火山作用和内部的热量。甘尼米德比水星还要大,是太阳系内最大的卫星。
土星
土星(Saturn)(9.5 天文单位),因为有明显的环系统而著名,它与木星非常相似,例如大气层的结构。土星不是很大,质量只有地球的95倍,它有60颗已知的卫星,泰坦和恩塞拉都斯,拥有巨大的冰火山,显示出地质活动的标志。泰坦比水星大,而且是太阳系中唯一实际拥有大气层的卫星。
天王星
天王星(Uranus)(19.6 天文单位),是最轻的外行星,质量是地球的14倍。它的自转轴对黄道倾斜达到90度,因此是横躺着绕着太阳公转,在行星中非常独特。在气体巨星中,它的核心温度最低,只辐射非常少的热量进入太空中。天王星已知的卫星有27颗,最大的几颗是泰坦尼亚、欧贝隆、乌姆柏里厄尔、艾瑞尔、和米兰达。
海王星
海王星(Neptune)(30 天文单位)虽然看起来比天王星小,但密度较高使质量仍有地球的17倍。他虽然辐射出较多的热量,但远不及木星和土星多。海王星已知有13颗卫星,最大的崔顿仍有活跃的地质活动,有着喷发液态氮的间歇泉,它也是太阳系内唯一逆行的大卫星。在海王星的轨道上有一些1:1轨道共振的小行星,组成海王星特洛伊群。
彗星
彗星归属于太阳系小天体,通常直径只有几公里,主要由具挥发性的冰组成。 它们的轨道具有高离心率,近日点一般都在内行星轨道的内侧,而远日点在冥王星之外。当一颗彗星进入内太阳系后,与太阳的接近会导致她冰冷表面的物质升华和电离,产生彗发和拖曳出由气体和尘粒组成、肉眼就可以看见的彗尾。
短周期彗星是轨道周期短于200年的彗星,长周期彗星的轨周期可以长达数千年。短周期彗星,像是哈雷彗星,被认为是来自柯伊伯带;长周期彗星,像海尔·波普彗星,则被认为起源于奥尔特云。有许多群的彗星,像是克鲁兹族彗星,可能源自一个崩溃的母体。有些彗星有着双曲线轨道,则可能来自太阳系外,但要精确的测量这些轨道是很困难的。 挥发性物质被太阳的热驱散后的彗星经常会被归类为小行星。
半人马群
半人马群是散布在9至30 天文单位的范围内,也就是轨道在木星和海王星之间,类似彗星以冰为主的天体。半人马群已知的最大天体是10199 Chariklo,直径在200至250 公里。第一个被发现的是2060 Chiron,因为在接近太阳时如同彗星般的产生彗发,目前已经被归类为彗星。有些天文学家将半人马族归类为柯伊伯带内部的离散天体,而视为是外部离散盘的延续。
外海王星区
在海王星之外的区域,通常称为外太阳系或是外海王星区,仍然是未被探测的广大空间。这片区域似乎是太阳系小天体的世界(最大的直径不到地球的五分之一,质量则远小于月球),主要由岩石和冰组成。
柯伊伯带
柯伊伯带,最初的形式,被认为是由与小行星大小相似,但主要是由冰组成的碎片与残骸构成的环带,扩散在距离太阳30至50 天文单位之处。这个区域被认为是短周期彗星——像是哈雷彗星——的来源。它主要由太阳系小天体组成,但是许多柯伊伯带中最大的天体,例如创神星、伐楼拿、2003 EL61、2005 FY9和厄耳枯斯等,可能都会被归类为矮行星。估计柯伊伯带内直径大于50 公里的天体会超过100,000颗,但总质量可能只有地球质量的十分之一甚至只有百分之一。许多柯伊伯带的天体都有两颗以上的卫星,而且多数的轨道都不在黄道平面上。
柯伊伯带大致上可以分成共振带和传统的带两部分,共振带是由与海王星轨道有共振关系的天体组成的(当海王星公转太阳三圈就绕太阳二圈,或海王星公转两圈时只绕一圈),其实海王星本身也算是共振带中的一员。传统的成员则是不与海王星共振,散布在39.4至47.7 天文单位范围内的天体。传统的柯伊伯带天体以最初被发现的三颗之一的1992 QB1为名,被分类为类QB1天体。
冥王星和卡戎
冥王星和已知的三颗卫星 冥王星(Pluto)(平均距离39 天文单位)是一颗矮行星,也是柯伊伯带内已知的最大天体之一。当它在1930年被发现后被认为是第九颗行星,直到2006年才重分类为矮行星。冥王星的轨道对黄道面倾斜17度,与太阳的距离在近日点时是29.7天文单位(在海王星轨道的内侧),远日点时则达到49.5天文单位。
目前还不能确定卡戎(Charon),冥王星的卫星,是否应被归类为目前认为的卫星还是属于矮行星,因为冥王星和卡戎互绕轨道的质心不在任何一者的表面之下,形成了冥王星-卡戎双星系统。另外两颗很小的卫星,尼克斯(Nix)与许德拉(Hydra)则绕着冥王星和卡戎公转。
冥王星在共振带上,与海王星有着3:2的共振(冥王星绕太阳公转二圈时,海王星公转三圈)。柯伊伯带中有着这种轨道的天体统称为类冥天体。
离散盘
离散盘与柯伊伯带是重叠的,但是向外延伸至更远的空间。离散盘内的天体应该是在太阳系形成的早期过程中,因为海王星向外迁徙造成的引力扰动才被从柯伊伯带抛入反覆不定的轨道中。多数黄道离散天体的近日点都在柯伊伯带内,但远日点可以远至150 天文单位;轨道对黄道面也有很大的倾斜角度,甚至有垂直于黄道面的。有些天文学家认为黄道离散天体应该是柯伊伯带的另一部分,并且应该称为"柯伊伯带离散天体"。
此外,关于类似太阳系的天体系统的研究的另一个目的是探索其他星球上是否也存在着生命。
太阳系是由受太阳引力约束的天体组成的系统,它的最大范围约可延伸到1光年以外。太阳系的主要成员有:太阳(恒星)、九大行星(包括地球)、无数小行星、众多卫星(包括月亮),还有彗星、流星体以及大量尘埃物质和稀薄的气态物质.在太阳系中,太阳的质量占太阳系总质量的99.8%,其它天体的总和不到有太阳的0.2%。太阳是中心天体,它的引力控制着整个太阳系,使其它天体绕太阳公转,太阳系中的九大行星(水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星)都在接近同一平面的近圆轨道上,朝同一方向绕太阳公转。
距离
(AU)
半径
(地球)
质量
(地球)
轨道倾角
(度)
轨道
偏心率
倾斜度
密度
(g/cm3)

太阳 0 109 332,800 --- --- --- 1.410
水星 0.39 0.38 0.05 7 0.2056 0.1° 5.43
金星 0.72 0.95 0.89 3.394 0.0068 177.4° 5.25
地球 1.0 1.00 1.00 0.000 0.0167 23.45° 5.52
火星 1.5 0.53 0.11 1.850 0.0934 25.19° 3.95
木星 5.2 11.0 318 1.308 0.0483 3.12° 1.33
土星 9.5 9.5 95 2.488 0.0560 26.73° 0.69
天王星 19.2 4.0 17 0.774 0.0461 97.86° 1.29
海王星 30.1 3.9 17 1.774 0.0097 29.56° 1.64
冥王星 39.5 0.18 0.002 17.15 0.2482 119.6° 2.03

回答2:

太阳与太阳系

太阳系
在远古的时候,人们就注意到天上许多星星的相对位置是恒定不变的。但有5颗亮星却在众星之间不断地移动。因此人们把“动”的星星称为“行星”,“不动”的星星称为“恒星”,并给行星各自起了名字,即:水星、金星、火星、木星和土星。其中水星也称辰星,它最靠近太阳,不超过一辰(30度)。金星又叫太白星或启明星、长庚星。它光彩夺目,是全天最亮的星;火星又称“荧惑”,因它的火红颜色而得名;木星也称岁星,它大约12年运行一周天,每年差不多行经一次(全天分成十二次),古代用它来纪年;土星也称镇星或填星,因为它大约28年运行一周天,一年镇守一宿(中国古代把全天分成二十八宿)。这就是人们肉眼能看见的五大行星,中国古代统称它们为“五星”,再加上太阳、月亮总称为“七曜”。
近两个世纪以来,天文学家又发现了3颗大行星(天王星、海王星和冥王星)。这样,包括地球在内的9颗行星就构成了一个围绕太阳旋转的行星系统。离太阳最近的行星是水星,以下依次是金星、地球、火星、木星、土星、天王星、海王星和冥王星。除了水星和金星之外,所有的行星都有卫星。在火星和木星之间存在着数十万颗大小不等、形状各异的小行星,天文学家把这个区域称为小行星带。此外,太阳系中还有许许多多的彗星、流星以及稀薄的微尘粒和气体等。
太阳质量占太阳系总质量的99.8%,它以自己强大的引力将太阳系里的所有天体牢牢地吸引在它的周围,使它们不离不散、井然有序地绕自己旋转。同时,太阳又作为一颗普通恒星,带领它的成员,万古不息地绕银河系的中心运动。
...
太 阳

清晨,当你站在茫茫大海的岸边或登上五岳之首的泰山,眺望东方冉冉升起的一轮红日时,一种蓬勃向上的激情会从心底油然而生。人们热爱太阳,崇拜太阳,赞美太阳,把太阳看作是光明和生命的象征。

太阳在人类生活中是如此的重要,以致人们一直对它顶礼膜拜。中华民族的先民把自己的祖先炎帝尊为太阳神。印度人认为,当第一道阳光照射到恒河时,世界才开始有了万物。而在希腊神话中,太阳神被称为“阿波罗”。他是天神宙斯(Zeus)的儿子,他高大英俊,多才多艺,同时还是光明之神、医药之神、文艺之神、音乐之神、预言之神。他右手握着七弦琴,左手托着象征太阳的金球。

太阳处于太阳系的中心,是太阳系的主宰。它的质量占太阳系总质量的99.865%,是太阳系所有行星质量总和的745倍。所以,她有足够强大的吸引力,带领它大大小小的家族成员围着自己不停地旋转。

太阳是我们唯一能观测到表面细节的恒星。我们直接观测到的是太阳的大气层,它从里向外分为光球、色球和日冕三层。虽然就总体而言,太阳是一个稳定、平衡、发光的气体球,但它的大气层却处于局部的激烈运动之中。如:黑子群的出没,日珥的变化,耀斑的爆发等等。太阳活动现象的发生与太阳磁场密切相关。太阳周围的空间也充满从太阳喷射出来的剧烈运动着的气体和磁场。

天文上太阳的符号是⊙,它象征着宇宙之卵,是生命的源泉。
太 阳 基 本 数 据

日地平均距离
149,598,000千米
半径 696,000千米
质量 1.989×1033克
平均密度 1.409克/立方厘米
有效温度 5,770K
自转会合周期 26.9日(赤道);31.1日(极区)
光谱型 G2V
目视星等 -26.74等
目视绝对星等 4.83等
表面重力加速度 27,400厘米/平方秒
表面逃逸速度 617.7千米/秒
中心温度 约15,000,000K
中心密度 约160克/立方厘米
年龄 50亿年

太 阳 的 结 构

太阳是太阳系的中心天体,是太阳系里唯一的一颗恒星,也是离地球最近的一颗恒星。太阳是一颗中等质量的充满活力的壮年星,它处于银河系内,位于距银心约10千秒差距的悬臂内,银道面以北约8秒差距处。太阳的直径为139.2万千米,是地球的109倍。太阳的体积为141亿亿立方千米,是地球的130万倍。太阳的质量近2000亿亿亿吨,是地球的33万倍,它集中了太阳系99.865%的质量,是个绝对至高无上的“国王”。太阳是个炽热的气体星球,没有固体的星体或核心。太阳从中心到边缘可分为核反应区、辐射区、对流区和大气层。太阳能量的99%是由中心的核反应区的热核反应产生的。太阳中心的密度和温度极高,它发生着由氢聚变为氦的热核反应,而该反应足以维持100亿年,因此太阳目前正处于中年期。太阳大气的主要成分是氢(质量约占71%)与氦(质量约占27%)。

太阳和地球一样,也有大气层。太阳大气层从内到外可分为光球、色球和日冕三层。光球层厚约5000千米,我们所见到太阳的可见光,几乎全是由光球发出的。光球表面有颗粒状结构----“米粒组织”。光球上亮的区域叫光斑,暗的黑斑叫太阳黑子,太阳黑子的活动具有平均11.2年的周期。从光球表面到2000千米高度为色球层,它得在日全食时或用色球望远镜才能观测到,在色球层有谱斑、暗条和日珥,还时常发生剧烈的耀斑活动。色球层之外为日冕层,它温度极高,延伸到数倍太阳半径处,用空间望远镜可观察到X射线耀斑。日冕上有冕洞,而冕洞是太阳风的风源。日冕也得在日全食时或用日冕仪才可观测到。当太阳上有强烈爆发时,太阳风携带着的强大等离子流可能到达地球极区。这时,在地球两极则可看见瑰丽无比的极光。

太 阳 光 球 及 其 活 动

光球就是我们实际看到的太阳圆面,它有一个比较清楚的圆周界线。光球的表面是气态的,其平均密度只有水的几亿分之一。光球厚达500千米,极不透明。光球上密密麻麻地分布着极不稳定的斑斑点点,被称为“米粒组织”。米粒组织可能是光球下面气体对流产生的现象。另外,还有超米粒组织,其直径与寿命要大的多。在光球还分布着太阳黑子和光斑,偶尔还会出现白光耀斑。这些活动现象有着相差悬殊的亮度、物理状态和结构。

所谓太阳黑子是光球层上的黑暗区域,它的温度大约为4500K, 而光球其余部分的温度约为6000K。 在明亮的光球反衬下,就显得很黑。

发展完全的黑子是由较暗的核(本影)和围绕它的较亮部分(半影)构成的,形状像一个浅碟。太阳黑子是太阳活动的最明显标志之一。太阳黑子的突出特点是具有强大的磁场,范围从小太阳黑子的500高斯到大太阳黑子的4000高斯不等。黑子最多的年份称太阳活动极大年,最少的年份称太阳活动极小年。太阳黑子的平均活动周期是11.2年。光球上还有一些比周围更明亮的区域,叫光斑。它与黑子常常相伴而生。

太 阳 色 球 及 其 活 动

光球的上界同色球相接,在日全食时能看到。色球层厚约8000千米。太阳具有反常增温现象,从光球顶部到色球顶部再到日冕区,温度不断陡升。色球层有出现在日轮边缘的针状物,它们不断产生与消失,寿命一般只有10分钟。色球上经常出现一些暗的“飘带”,我们称它为暗条 。当它转到日面边缘时,有时象一只耳朵,有时好象腾起的火焰,人们俗称它为日珥。日珥的形态千变万化,可分为宁静日珥、活动日珥和爆发日珥。
太阳色球层有些局部亮区域,我们称它为谱斑。它处于太阳黑子的正上方。有时谱斑亮度会突然增强,这就是我们通常说的耀斑。耀斑释放的能量极其巨大。其巨大的能量来自磁场。

日 冕 与 太 阳 风

太阳最外层的大气称为日冕。日冕延伸的范围达到太阳直径的几倍到几十倍。
在太阳活动极大年,日冕接近圆形;在太阳宁静年则呈椭圆形。
日冕中有大片不规则的暗黑区域,叫冕洞。冕洞是日冕中气体密度较低的区域。冕洞分为三种:极区冕洞,孤立冕洞,延伸冕洞。太阳能以太阳风----物质粒子流的形式失去物质。冕洞是高速太阳风的重要源泉。 日冕物质抛射是发生在日冕的非常宏观庞大的物质和磁场结构,它是大尺度致密等离子体的突然爆发现象。对地球影响最大的莫过于它。当太阳上有强烈爆发和日冕物质抛射时,太阳风携带着的强大等离子流可能到达地球极区。这时,地球两极就出现极光。极光的形态千变万化。太阳系内某些具有磁场的行星上也有极光。发生在日冕的耀斑叫X射线耀斑,它的波长只有1~8埃或更短。它直接引起地球电离层骚扰,从而影响地球短波通讯。
太 阳 的 能 量 来 源

太阳的能源问题一向很吸引人。最早有人提出太阳能量是由其自身物质向中心收缩产生的。然而,这样的能源只可维持大约3000万年,而地球上最古老的岩石年龄已有38亿年了。此后的一些假说,同样难以自圆其说。后来人们才知道,太阳能源来自它直径不到50万千米的核心部分,其核心温度极高,压力极大,发生了热核反应:每4个氢原子核结合成一个氦原子核,同时释放出巨大的能量。这一过程足足可以进行100亿年。

太 阳 活 动 预 报

日地空间环境状态的变化对现代生活、生产所依赖的现代尖端技术显得越来越重要。前面已提到,X射线耀斑直接引起地球电离层骚扰,从而影响地球短波通讯。太阳质子事件会危及宇航员和宇宙飞行器上的传感器及控制设备,对在高纬地区飞行的旅客和乘务人员也构成辐射威胁。另外有人统计,剧烈的太阳活动与地震、火山爆发、旱涝灾害、心脏和神经系统疾病的发生及交通事故都有关系。 所以,太阳活动和日地物理预报是非常重要的。太阳活动预报分为长期、中期、短期预报和警报。

日地空间环境作为系统的科学研究对象是在1957年人类进入太空开始的。50至70年代是探索阶段,人们逐步认识到太空环境的重要性。在大量探测的基础上建立了描述环境的静态模式,对一些重大的航天活动做了安全性的预报。80年代以后,在需求的推动下,日地空间环境的研究得到迅速的发展。自1979年开始每隔四年一次的国际日地预报会议均如期举行,规模逐次扩大。为了联合和协调各主要国家的工作,成立了联合的预报中心。总部设在美国,有10个区域警报中心分布于全球。我们北京区域警报中心是其中之一。进入90年代以后科学家们形象地称之为“空间天气。
虽然取得了一些成绩,但预报水平仍亟待提高。

日 食—瑰丽的自然景观

日食,特别是日全食,是天空中颇为壮观的景象。如果在晴朗的天气发生日全食,人们可以看到:好端端一个圆圆的太阳,它的西边缘开始缺掉一块(实际上是被月影遮住),所缺的面积逐渐扩大,当太阳只剩下一个月牙形时,天色逐渐昏暗下来,如同夜幕降临。当太阳全被遮住时,夜幕完全笼罩大地。突然,在原来太阳位置四周喷射出皎洁悦目的淡蓝色的日冕和红色的日珥。此后,太阳西边缘又露出光芒,大地重见光明,太阳圆面上被遮的部分逐渐减少,太阳渐渐恢复了本来面貌。
仔细观察,在全食即将开始或结束时,太阳圆面被月球圆面遮住,只剩下一圈弯弯的细线时,往往会出现一串发光的亮点,像是一串晶莹剔透的珍珠。这是由于月球表面高低不平的山峰像锯齿一样把太阳发出的光线切断造成的。英国天文学家倍利(Berrie)于1838年和1842年首先描述并研究了这种现象,所以称为倍利珠。

日 食 成 因

我们知道,月球是围绕地球转动的,地球又带着月球一起绕着太阳公转,当月球运行到太阳和地球之间,三者差不多成一直线时,月影挡住了太阳,于是就发生了日食。月影有本影、伪本影(本影的延长部分)和半影之分。在月亮本影扫过的地方,那里太阳光全部被遮住,所看到的是日全食;在半影扫过的地方,月球仅遮住日面的一部分,这时看到的是日偏食。有时,月球本影达不到地面,它延伸出的伪本影扫到地面,此时太阳中央的绝大部分被遮住,在周围留有一圈明亮的光环,这就是日环食。天文学家称环食和全食为中心食。中心食的过程中必然会发生日偏食。
日食一定发生在朔日,即农历初一,但不是所有的朔日都会发生日食。这是因为月球绕地球运动的轨道平面(白道面)和地球绕太阳运转的轨道平面(黄道面)并不是重叠在一起的,而是有一个平均大约为5°09′的倾角。所以在大多数的朔日里,月球虽然运行到太阳和地球之间,但月影扫不到地面而不会发生日食。据统计,世界上每年至少要发生两次日食,最多时可达5次。月球的本影或伪本影在地面扫过的区域称为日食带。日食带的宽度一般为几十千米至二三百千米,因此,平均要二三百年才有机会在某一地区看到一次日全食。1997年3月9日,中国黑龙江北端看到了一次日全食,这是本世纪在中国能看到的最后一次日全食。1999年8月11的日全食,是本世纪陆地地区可见的最后一次日全食,全食带从大西洋西海岸,经大西洋、英国南端、法国、德国,到西亚、印度北部和孟加拉湾。其中罗马尼亚的布加勒斯特附近全食时间最长,是观看这次日食最好的地区。

中国古代日食观测

在科学不发达的古代,人们不明白日食发生的原因,以为太阳被“天狗”吃掉了。因此,每当发生日食,人们都非常恐慌,敲盆击鼓要把“天狗”轰走。古代统治者把日食看作是上天的警告,因此对日食观测很重视,设有专门机构和官员负责。相传公元前2000多年的中国夏代,有一位叫羲和的天文官员因沉缅酒色,漏报了日食,被斩首。据说此后再也没有一个天文官员敢在观测时玩忽职守了。

由于历代都有专门的观测者,因而中国古代留下的日食记录是很丰富的。根据统计,到清代为止,不算甲骨文,只是史书记载的日食就有1000次以上,这是一份十分宝贵的科学遗产。其中最早的一次发生在大禹三年,在平定三苗之乱时发生日食,由此推算出的年代为公元前1912年,即距今3911年了。

由于日光十分强烈,除了日全食之外,是无法用眼睛直接观测太阳的。公元前1世纪,有一个叫京房的人采取了一种很巧妙的观测日食的方法。他将一盆水放在院子里,日食时去观察水中映出的太阳,从而避免了眼睛直接接触阳光而被灼伤。后来,人们用油代替水,进一步减少了日光的刺激。13世纪,元代大天文学家郭守敬发明了一种叫仰仪的半球形仪器,里面有刻度,可以比较准确地测定各个食相的时刻,并估计出食分。到了17世纪,望远镜传入了中国,崇尚西学的科学家徐光启用它观测日食,观测精度有了大幅度提高。
因为日食计算涉及到太阳和月球的运动,所以,古代不少天文学家利用日食记录来验证自己的历法。而到了本世纪,古代日食记录有了更多的用途。1969年有人利用25次公元2年以前的古日食记录来计算地球自转速率的长期变化(逐渐变慢),这25次中有9次是中国的。世界天文学家普遍认为,中国古代日食记录的可信程度是最好的。
现 代 日 食 观 测

在历史上,人们利用日全食时月影挡住日面的特殊条件,观测色球和日冕,取得了重要科学发现。现在,我们虽然已具备了平时观测太阳色球和日冕的若干手段,但还不能完全取代日全食的观测。最精细的日冕照片仍然是在日全食时拍下的;日全食时拍摄的闪光光谱,仍然是建立太阳光球、色球和日冕大气模型的重要观测资料。因此,在每次发生日全食时,天文学家总是千方百计地前去观测。

近50年来,对太阳的射电观测极大地推动了太阳物理学的进展,但是射电观测分辨率低,很难分辨日面上的细节。而在日食时,天文学家可以根据不同时刻月面掩日面的程度,及射电望远镜记录的变化,来判断射电源的准确位置,获取高分辨率的太阳射电观测资料。另外,与光学观测相比,射电望远镜还占有两大优势:首先人们感兴趣的是日食时月球掩食日面的过程,而不是日面被全掩的瞬间,所以偏食、环食同样具有观测价值;其次,光学观测日食的成功率不大,天气不佳或者日食过程中掠过日面的一片浮云都会使观测前功尽弃。射电观测则受天气影响很小。20世纪70年代中期以前,有关太阳射电的知识大部分是通过日食观测得到的。
日 全 食 与 相 对 论

爱因斯坦(Albert Einstein)是20世纪最伟大的科学家。提起爱因斯坦人们就会联想到相对论。相对论中有一个重要的推论就是:物质都有质量,质量产生引力。光线在经过物体近旁时会因引力作用而发生偏转。通常光线经过的物体质量很小,所以偏转极微,近乎是条直线。当光线 通过质量足够大的物体时,偏转效应便会显示出来。太阳是个质量很大的物体,若有天体的光线从太阳近旁经过,应该发生可以检测出来的位置偏移。1916年爱因斯坦计算出恒星光在太阳近旁通过时偏转角度是1.75角秒。验证的方法就是利用日全食时拍摄太阳近旁恒星的照片,再用它与半年前或半年后太阳不在这个天区时的照片作非常精密的恒星位置测量比较,看看这些星的位置是否发生了微小的变化。

正好1919年5月29日将在南美洲和非洲发生一次日全食。为了验证相对论,英国格林尼治天文台和剑桥大学天文台分别派出了日食远征队到巴西和西非观测。两地的观测都非常成功。得到太阳近旁恒星位置移动的数量分别是1.98角秒和1.61角秒。考虑到观测过程中可能发生的各种误差,这样的数值已经非常接近理论值。这是日食观测史上最值得纪念的一次天文事件。

接着1922年9月21日东非和澳洲发生日全食,又有几支日食远征队观测成功。拍摄到的星像经过精密测定得出恒星位置偏移量为1.72角秒,与爱因斯坦所计算的理论值只差0.03角秒。以后,每逢日全食天文学家还在不断观测,结果都与理论值非常接近。日全食观测结果证明爱因斯坦的相对论是经得起考验的科学理论。
1997年3月9日北京时间9时08分—9时l1分左右,我国黑龙江省漠河地区将发生日全食。虽然从全世界来说,大约每三年可见两次日全食,然而任一具体地区平均需三百多年才能看到一次日全食。即使是幅员辽阔的我国,本世纪也只能看到6次三全食,今年3月9日是其中最后一次。下一次将于2008年出现在我国西北地区。

在日全食期间,由于明亮的太阳光球被月球遮挡,在暗黑的天空背景上,将出现平时根本看不见的发光暗弱的太阳高层大气(色球层和日冕),是研究太阳上这两个神秘层次的绝好机会。同时,日全食又是研究因太阳光突然消失而对地球大气、 电离层、 地磁和地电、以及生态等产生影响的难得时机,因而日全食具有重要的科研价值。并且,在日全食前后,也是对日食地区广大群众进行科学普及和破除迷信等宣传教育的有利时机。

本次日全食的全食带在我国境内的位置如图所示。其中四条平行直线表示4个不同时刻月影中心位置,它们的见食情况列于图后附表。这次日全食过程中,月球本影最先与地面接触发生在我国新疆最北部的阿尔泰地区与哈萨克共和国交界处,当时日出不久,太阳高度只有8度。然后,月影扫过蒙古共和国和俄罗斯,大约在北京时间9时07分进入我国内蒙古的满归地区,9时08分进入黑龙江漠河地区,9时12分离开我国出境。因此,在我国境内的最佳观测时间和地点应是9时08分~9时ll分在黑龙江漠河地区,当时太阳高度约21.5度,日全食持续时间为2分46秒。可见日全食的可观测条件要比l968年9月22日在新疆和l980年2月16日在云南的日全食优越得多。新疆日全食的太阳高度只有5度,全食时间只有0.3分钟;云南日全食时太阳高至也只有9度,全食时间不过l.7分钟。

我国准备对这次日全食进行专业观测研究。中国科学院北京天文台、紫金山天文台、云南天文台、空间科学与应用研究中心、地球物理研究所、电子工业部22所、南京大学天文系和北京师范大学天文系等已经提出了涉及太阳物理、空间物理、电离层、地磁和地电等领域的16个观测项目,其中太阳方面有色球闪光谱和日冕白光观测,以及毫米波和厘米波太阳射电观测。许多天文爱好者也已表示到时将前往北疆进行业余观测。同时,日本、台湾和香港地区的专业工作者和爱好者也在联系到漠河地区观测。1997年3月5—10日还将在漠河县举行“太阳与人类环境”科学讨论会,对日食观测、日地关系及其对人类环境的影响,进行学术讨论,并提供观测和观赏本次日全食的机会。
1999 年 欧 洲 日 全 食

1999年8月11日的日全食,是本世纪陆陆地区可见的最后一次日全食。许多国家的天文学家和爱好者都组团赴欧洲观测日全食的壮观景象。中国科协和中国天文学会已组成赴欧日全食观测团队,主要进行照相(日珥、日冕、贝利珠等)观测和光谱观测等。

这次日食,全食带经过欧亚大陆许多国家的许多城市(从大西洋西海岸,经大西洋、英国南端、法国、德国,到西亚、印度北部和孟加拉湾)。其中罗马尼亚的布加勒斯特附近全食时间最长,是这次见食最好的地区。详细情况请见附表和附图。

8月11日全食带内各地见食情况表

地名 全食
时间 食甚时刻
(地方时) 太阳地平高度 太阳地平
经度
彭赞斯
【英】
2m02s 11:12
(上午) 46° 130°
普利茅斯
【英】 1m39s 11:14
(上午) 46° 132°
兰斯
【法】 1m59s 12:26
(下午) 52° 146°
梅斯
【法】 2ml3s 12:29
(下午) 53° 150°
斯图加特
【德】 2m17s 12:34
(下午) 55° 157°
慕尼黑
【德】 2m08s 12:38
(下午) 56° 162°
萨尔茨堡
【奥】 2m02s 12:41
(下午) 57° 166°
格拉茨
【奥】 lml2s 12:46
(下午) 58° 172°
塞格德
【匈】 2m21s 12:55
(下午) 59° 185°
布加靳斯特
【罗】 2m22s 2:07
(下午) 59° 202°
瑟瓦斯
【土】 2m07s 2:32
(下午) 55° 232°
迪亚尔巴克尔
【土】 1m20s 2:40
(下午) 53° 242°
伊斯法罕
【伊朗】 1m33s 4:33
(下午) 41° 262°
卡拉奇
【巴】 1ml3s 5:27
(下午) 22° 277°
瓦多达拉
【印】 1m02s 6:02
(下午) 15° 281°

1999 年 欧 洲 日 全 食 照 片

狭缝日食----1999年8月11日德国慕尼黑日全食观测纪实

中国科大附中刘文静

1999年8月11日,我随全国日全食观测团来到了德国南部城市慕尼黑观测本世纪最后一次日全食。这次日全食带从大西洋西部开始,经过欧洲、亚洲西部和南部,在印度洋北部结束。慕尼黑位于日食带内,日食全过程长达之小时40分左右,全食时间在2分钟以上。

8月11日这天的天气是多云、小雨,但是我们还是按计划来到了预先选好的观测地点:慕尼黑航空博物馆的操场上。8时30分左右我们架起照像机、望远镜紧张地进行着观测前的准备工作。天空浓云密布,偶尔露出小片蓝天,但又很快被乌云遮盖。随着时间的推移,天空越阴越重,并下起了阵阵小雨。我怀着十分焦急的心情时而看表,时而看天,等待11时16分24秒(慕尼黑初亏时刻)初亏就拍照。但是初亏时刻到了,太阳完全被浓云遮往了。 11时23分太阳从云层的缝隙中露了出来,我急忙按下快门,拍下第一张日食照片,此时太阳己被月面遮往了一小部分。就这样,只要太阳露出云层我就抢拍一张。天空的云向南飘着,太阳时隐时现。日全食快开始了,云层仍然很厚,我的心情更加紧张,我盼望着奇迹出现。时间一秒一秒地过去, 12时37分13秒(全食始的时间)奇迹真的出现了,浓云裂开一条狭缝,太阳从云层的狭缝中露了出来。刹那间太阳光芒四射,前倍利珠放出耀眼的光芒,日全食开始了,人们欢呼着。沸腾着。我连忙按动快门拍下了倍利珠、日珥和日冕。日全食时天色很暗,太阳戴上了一顶银白色的帽子,十分壮观。日冕的形状随太阳活动的强弱而变化,今年太阳活动己步入峰年,日冕接近圆形,而太阳活动宁静时则日冕较扁。 12时39分26秒月亮移出太阳表面,一束耀眼夺目的光芒再次从暗黑的日面边缘闪现出来,后倍利珠出现了。2分13秒的日全食结束了,我们幸运的度过了这非常短暂的“黑夜”,迎来了“黎明”。14时1分29秒太阳复圆了,天又阴了下来,下起小雨。两个多小时的观测,动人心弦。这是一场惊喜,浓云密布的天空露出一条狭缝,让我又一次饱览了日全食的壮观、美丽。这是一场惊险,险些给我留下本世纪最后的遗憾。真是永生难忘慕尼黑的狭缝日食。

未 来 的 日 食

2000~2020年中国可见的日食

年月日 食类 年月日 食类
2002. 06. 11 环食 2011. 01. 04 偏食
2003. 05. 31 环食 2011. 06. 21 偏食
2004. 10. 14 偏食 2012. 05. 21 环食
2005. 10. 03 环食 2015. 03. 20 全食
2006. 03. 29 全食 2016. 03. 09 全食
2007. 03. 19 偏食 2018. 08. 11 偏食
2008. 08. 01 全食 2019. 01. 06 偏食
2009. 01. 26
环食 2019. 12. 26 环食
2009. 07. 22 全食 2020. 06. 12 环食
...

回答3:

太阳系(Solar System)是以太阳为中心,和所有受到太阳重力约束的天体的集合体:8颗行星、至少165颗已知的卫星、3颗已经辨认出来的矮行星(冥王星和他的卫星)和数以亿计的太阳系小天体。这些小天体包括小行星、柯伊伯带的天体、彗星和星际尘埃。
广义上,太阳系的领域包括太阳,4颗像地球的内行星,由许多小岩石组成的小行星带,4颗充满气体的巨大外行星,充满冰冻小岩石,被称为柯伊伯带的第二个小天体区。在柯伊伯带之外还有黄道离散盘面和太阳圈,和依然属于假设的奥尔特云。
依照至太阳的距离,行星序是水星、金星、地球、火星、木星、土星、天王星、和海王星,8颗中的6颗有天然的卫星环绕着,这些星习惯上因为地球的卫星被称为月球而都被视为月球。在外侧的行星都有由尘埃和许多小颗粒构成的行星环环绕着,而除了地球之外,肉眼可见的行星以五行为名,在西方则全都以希腊和罗马神话故事中的神仙为名。三颗矮行星是冥王星,柯伊伯带内最大的天体之一,谷神星,小行星带内最大的天体,和属于黄道离散天体的阋神星。
[编辑本段]概述和轨道
太阳系内天体的轨道
太阳系的主角是位居中心的太阳,它是一颗光谱分类为G2V的主序星,拥有太阳系内已知质量的99.86%,并以引力主宰著太阳系。木星和土星,太阳系内最大的两颗行星,又占了剩余质量的90%以上,目前仍属于假说的奥尔特云,还不知道会占有多少百分比的质量。
太阳系内主要天体的轨道,都在地球绕太阳公转的轨道平面(黄道)的附近。行星都非常靠近黄道,而彗星和柯伊伯带天体,通常都有比较明显的倾斜角度。
由北方向下鸟瞰太阳系,所有的行星和绝大部分的其他天体,都以逆时针(右旋)方向绕着太阳公转。有些例外的,像是哈雷彗星。
环绕着太阳运动的天体都遵守开普勒行星运动定律,轨道都以太阳为椭圆的一个焦点,并且越靠近太阳时的速度越快。行星的轨道接近圆型,但许多彗星、小行星和柯伊伯带天体的轨道则是高度椭圆的。
在这么辽阔的空间中,有许多方法可以表示出太阳系中每个轨道的距离。在实际上,距离太阳越远的行星或环带,与前一个的距离就会更远,而只有少数的例外。例如,金星在水星之外约0.33天文单位的距离上,而土星与木星的距离是4.3天文单位,海王星又在天王星之外10.5天文单位。曾有些关系式企图解释这些轨道距离变化间的交互作用,但这样的理论从未获得证实。
[编辑本段]形成和演化
艺术家笔下的原行星盘
太阳系的形成据信应该是依据星云假说,最早是在1755年由康德和1796年由拉普拉斯各自独立提出的。这个理论认为太阳系是在46亿年前在一个巨大的分子云的塌缩中形成的。这个星云原本有数光年的大小,并且同时诞生了数颗恒星。研究古老的陨石追溯到的元素显示,只有超新星爆炸的心脏部分才能产生这些元素,所以包含太阳的星团必然在超新星残骸的附近。可能是来自超新星爆炸的震波使邻近太阳附近的星云密度增高,使得重力得以克服内部气体的膨胀压力造成塌缩,因而触发了太阳的诞生。
被认定为原太阳星云的地区就是日后将形成太阳系的地区,直径估计在7,000至20,000天文单位,而质量仅比太阳多一点(多0.1至0.001太阳质量)。当星云开始塌缩时,角动量守恒定律使它的转速加快,内部原子相互碰撞的频率增加。其中心区域集中了大部分的质量,温度也比周围的圆盘更热。当重力、气体压力、磁场和自转作用在收缩的星云上时,它开始变得扁平成为旋转的原行星盘,而直径大约200天文单位,并且在中心有一个热且稠密的原恒星。
对年轻的金牛T星的研究,相信质量与预熔合阶段发展的太阳非常相似,显示在形成阶段经常都会有原行星物质的圆盘伴随着。这些圆盘可以延伸至数百天文单位,并且最热的部分可以达到数千K的高温。
一亿年后,在塌缩的星云中心,压力和密度将大到足以使原始太阳的氢开始热融合,这会一直增加直到流体静力平衡,使热能足以抵抗重力的收缩能。这时太阳才成为一颗真正的恒星。
相信经由吸积的作用,各种各样的行星将从云气(太阳星云)中剩余的气体和尘埃中诞生:
·当尘粒的颗粒还在环绕中心的原恒星时,行星就已经开始成长;
·然后经由直接的接触,聚集成1至10公里直径的丛集;
·接着经由碰撞形成更大的个体,成为直径大约5公里的星子;
·在未来得数百万年中,经由进一步的碰撞以每年15厘米的的速度继续成长。
在太阳系的内侧,因为过度的温暖使水和甲烷这种易挥发的分子不能凝聚,因此形成的星子相对的就比较小(仅占有圆盘质量的0.6%),并且主要的成分是熔点较高的硅酸盐和金属等化合物。这些石质的天体最后就成为类地行星。再远一点的星子,受到木星引力的影响,不能凝聚在一起成为原行星,而成为现在所见到的小行星带。
在更远的距离上,在冻结线之外,易挥发的物质也能冻结成固体,就形成了木星和土星这些巨大的气体巨星。天王星和海王星获得的材料较少,并且因为核心被认为主要是冰(氢化物),因此被称为冰巨星。
一旦年轻的太阳开始产生能量,太阳风会将原行星盘中的物质吹入行星际空间,从而结束行星的成长。年轻的金牛座T星的恒星风就比处于稳定阶段的较老的恒星强得多。
根据天文学家的推测,目前的太阳系会维持直到太阳离开主序。由于太阳是利用其内部的氢作为燃料,为了能够利用剩余的燃料,太阳会变得越来越热,于是燃烧的速度也越来越快。这就导致太阳不断变亮,变亮速度大约为每11亿年增亮10%。
从现在起再过大约76亿年,太阳的内核将会热得足以使外层氢发生融合,这会导致太阳膨胀到现在半径的260倍,变为一个红巨星。此时,由于体积与表面积的扩大,太阳的总光度增加,但表面温度下降,单位面积的光度变暗。
随后,太阳的外层被逐渐抛离,最后裸露出核心成为一颗白矮星,一个极为致密的天体,只有地球的大小却有着原来太阳一半的质量。
[编辑本段]结构和组成
太阳系是由受太阳引力约束的天体组成的系统是宇宙中的一个小天体系统,
太阳系的结构可以大概地分为五部分:
太阳
太阳是太阳系的母星,也是最主要和最重要的成员。它有足够的质量让内部的压力与密度足以抑制和承受核融合产生的巨大能量,并以辐射的型式,例如可见光,让能量稳定的进入太空。太阳在赫罗图上的位置
太阳在分类上是一颗中等大小的黄矮星,不过这样的名称很容易让人误会,其实在我们的星系中,太阳是相当大与明亮的。恒星是依据赫罗图的表面温度与亮度对应关系来分类的。通常,温度高的恒星也会比较明亮,而遵循此一规律的恒星都会位在所谓的主序带上,太阳就在这个带子的中央。但是,但是比太阳大且亮的星并不多,而比较暗淡和低温的恒星则很多。
太阳在恒星演化的阶段正处于壮年期,尚未用尽在核心进行核融合的氢。太阳的亮度仍会与日俱增,早期的亮度只是现在的75%。
计算太阳内部氢与氦的比例,认为太阳已经完成生命周期的一半,在大约50亿年后,太阳将离开主序带,并变得更大与更加明亮,但表面温度却降低的红巨星,届时它的亮度将是目前的数千倍。
太阳是在宇宙演化后期才诞生的第一星族恒星,它比第二星族的恒星拥有更多的比氢和氦重的金属(这是天文学的说法:原子序数大于氦的都是金属。)。比氢和氦重的元素是在恒星的核心形成的,必须经由超新星爆炸才能释入宇宙的空间内。换言之,第一代恒星死亡之后宇宙中才有这些重元素。最老的恒星只有少量的金属,后来诞生的才有较多的金属。高金属含量被认为是太阳能发展出行星系统的关键,因为行星是由累积的金属物质形成的。
行星际物质
除了光,太阳也不断的放射出电子流(等离子),也就是所谓的太阳风。这条微粒子流的速度为每小时150万公里,在太阳系内创造出稀薄的大气层(太阳圈),范围至少达到100天文单位(日球层顶),也就是我们所认知的行星际物质。 太阳的黑子周期(11年)和频繁的闪焰、日冕物质抛射在太阳圈内造成的干扰,产生了太空气候。伴随太阳自转而转动的磁场在行星际物质中所产生的太阳圈电流片,是太阳系内最大的结构。
地球的磁场从与太阳风的互动中保护著地球大气层。水星和金星则没有磁场,太阳风使它们的大气层逐渐流失至太空中。 太阳风和地球磁场交互作用产生的极光,可以在接近地球的磁极(如南极与北极)的附近看见。
宇宙线是来自太阳系外的,太阳圈屏障著太阳系,行星的磁场也为行星自身提供了一些保护。宇宙线在星际物质内的密度和太阳磁场周期的强度变动有关,因此宇宙线在太阳系内的变动幅度究竟是多少,仍然是未知的。
行星际物质至少在在两个盘状区域内聚集成宇宙尘。第一个区域是黄道尘云,位于内太阳系,并且是黄道光的起因。它们可能是小行星带内的天体和行星相互撞击所产生的。第二个区域大约伸展在10-40天文单位的范围内,可能是柯伊伯带内的天体在相似的互相撞击下产生的。

内太阳系
内太阳系在传统上是类地行星和小行星带区域的名称,主要是由硅酸盐和金属组成的。这个区域挤在靠近太阳的范围内,半径还比木星与土星之间的距离还短。
内行星所有的内行星
四颗内行星或是类地行星的特点是高密度、由岩石构成、只有少量或没有卫星,也没有环系统。它们由高熔点的矿物,像是硅酸盐类的矿物,组成表面固体的地壳和半流质的地幔,以及由铁、镍构成的金属核心所组成。四颗中的三颗(金星、地球、和火星)有实质的大气层,全部都有撞击坑和地质构造的表面特征(地堑和火山等)。内行星容易和比地球更接近太阳的内侧行星(水星和金星)混淆。行星运行在一个平面,朝着一个方向
水星
水星(Mercury)(0.4 天文单位)是最靠近太阳,也是最小的行星(0.055地球质量)。它没有天然的卫星,仅知的地质特征除了撞击坑外,只有大概是在早期历史与收缩期间产生的皱折山脊。 水星,包括被太阳风轰击出的气体原子,只有微不足道的大气。目前尚无法解释相对来说相当巨大的铁质核心和薄薄的地幔。假说包括巨大的冲击剥离了它的外壳,还有年轻时期的太阳能抑制了外壳的增长。
金星
金星 (Venus)(0.7 天文单位)的体积尺寸与地球相似(0.86地球质量),也和地球一样有厚厚的硅酸盐地幔包围着核心,还有浓厚的大气层和内部地质活动的证据。但是,它的大气密度比地球高90倍而且非常干燥,也没有天然的卫星。它是颗炙热的行星,表面的温度超过400°C,很可能是大气层中有大量的温室气体造成的。没有明确的证据显示金星的地质活动仍在进行中,但是没有磁场保护的大气应该会被耗尽,因此认为金星的大气是经由火山的爆发获得补充。
地球
地球(Earth)(1 天文单位)是内行星中最大且密度最高的,也是维一地质活动仍在持续进行中并拥有生命的行星。它也拥有类地行星中独一无二的水圈和被观察到的板块结构。地球的大气也于其他的行星完全不同,被存活在这儿的生物改造成含有21%的自由氧气。它只有一颗卫星,即月球;月球也是类地行星中唯一的大卫星。地球公转(太阳)一圈约365天,自转一圈约1天。(太阳并不是总是直射赤道,因为地球围绕太阳旋转时,稍稍有些倾斜。)
火星
火星(Mars)(1.5 天文单位)比地球和金星小(0.17地球质量),只有以二氧化碳为主的稀薄大气,它的表面,例如奥林匹斯山有密集与巨大的火山,水手号峡谷有深邃的地堑,显示不久前仍有剧烈的地质活动。火星有两颗天然的小卫星,戴摩斯和福伯斯,可能是被捕获的小行星。
小行星带
小行星的主带和特洛伊小行星 小行星是太阳系小天体中最主要的成员,主要由岩石与不易挥发的物质组成。
主要的小行星带位于火星和木星轨道之间,距离太阳2.3至3.3 天文单位,它们被认为是在太阳系形成的过程中,受到木星引力扰动而未能聚合的残余物质。
小行星的尺度从大至数百公里、小至微米的都有。除了最大的谷神星之外,所有的小行星都被归类为太阳系小天体,但是有几颗小行星,像是灶神星、健神星,如果能被证实已经达到流体静力平衡的状态,可能会被重分类为矮行星。
小行星带拥有数万颗,可能多达数百万颗,直径在一公里以上的小天体。尽管如此,小行星带的总质量仍然不可能达到地球质量的千分之一。小行星主带的成员依然是稀稀落落的,所以至今还没有太空船在穿越时发生意外。
直径在10至10-4 米的小天体称为流星体。
谷神星
谷神星 (Ceres)(2.77 天文单位)是主带中最大的天体,也是主带中唯一的矮行星。它的直径接近1000公里,因此自身的引力已足以使它成为球体。它在19世纪初被发现时,被认为是一颗行星,在1850年代因为有更多的小天体被发现才重新分类为小行星;在2006年,又再度重分类为矮行星。
小行星族
在主带中的小行星可以依据轨道元素划分成几个小行星群和小行星族。小行星卫星是围绕着较大的小行星运转的小天体,它们的认定不如绕着行星的卫星那样明确,因为有些卫星几乎和被绕的母体一样大。
在主带中也有彗星,它们可能是地球上水的主要来源。
特洛依小行星的位置在木星的 L4或L5点(在行星轨道前方和后方的不稳定引力平衡点),不过"特洛依"这个名称也被用在其他行星或卫星轨道上位于拉格朗日点上的小天体。 希耳达族是轨道周期与木星2:3共振的小行星族,当木星绕太阳公转二圈时,这群小行星会绕太阳公转三圈。
内太阳系也包含许多“淘气”的小行星与尘粒,其中有许多都会穿越内行星的轨道。
中太阳系
太阳系的中部地区是气体巨星和它们有如行星大小尺度卫星的家,许多短周期彗星,包括半人马群也在这个区域内。此区没有传统的名称,偶尔也会被归入"外太阳系",虽然外太阳系通常是指海王星以外的区域。在这一区域的固体,主要的成分是"冰"(水、氨和甲烷),不同于以岩石为主的内太阳系。
外行星
所有的外行星 在外侧的四颗行星,也称为类木行星,囊括了环绕太阳99%的已知质量。木星和土星的大气层都拥有大量的氢和氦,天王星和海王星的大气层则有较多的“冰”,像是水、氨和甲烷。有些天文学家认为它们该另成一类,称为“天王星族”或是“冰巨星”。这四颗气体巨星都有行星环,但是只有土星的环可以轻松的从地球上观察。“外行星”这个名称容易与“外侧行星”混淆,后者实际是指在地球轨道外面的行星,除了外行星外还有火星。
木星
木星(Jupiter)(5.2 天文单位),主要由氢和氦组成,质量是地球的318倍,也是其他行星质量总合的2.5倍。木星的丰沛内热在它的大气层造成一些近似永久性的特征,例如云带和大红斑。木星已经被发现的卫星有63颗,最大的四颗,甘尼米德、卡利斯多、埃欧、和欧罗巴,显示出类似类地行星的特征,像是火山作用和内部的热量。甘尼米德比水星还要大,是太阳系内最大的卫星。
土星
土星(Saturn)(9.5 天文单位),因为有明显的环系统而著名,它与木星非常相似,例如大气层的结构。土星不是很大,质量只有地球的95倍,它有60颗已知的卫星,泰坦和恩塞拉都斯,拥有巨大的冰火山,显示出地质活动的标志。泰坦比水星大,而且是太阳系中唯一实际拥有大气层的卫星。
天王星
天王星(Uranus)(19.6 天文单位),是最轻的外行星,质量是地球的14倍。它的自转轴对黄道倾斜达到90度,因此是横躺着绕着太阳公转,在行星中非常独特。在气体巨星中,它的核心温度最低,只辐射非常少的热量进入太空中。天王星已知的卫星有27颗,最大的几颗是泰坦尼亚、欧贝隆、乌姆柏里厄尔、艾瑞尔、和米兰达。
海王星
海王星(Neptune)(30 天文单位)虽然看起来比天王星小,但密度较高使质量仍有地球的17倍。他虽然辐射出较多的热量,但远不及木星和土星多。海王星已知有13颗卫星,最大的崔顿仍有活跃的地质活动,有着喷发液态氮的间歇泉,它也是太阳系内唯一逆行的大卫星。在海王星的轨道上有一些1:1轨道共振的小行星,组成海王星特洛伊群。
彗星
彗星归属于太阳系小天体,通常直径只有几公里,主要由具挥发性的冰组成。 它们的轨道具有高离心率,近日点一般都在内行星轨道的内侧,而远日点在冥王星之外。当一颗彗星进入内太阳系后,与太阳的接近会导致她冰冷表面的物质升华和电离,产生彗发和拖曳出由气体和尘粒组成、肉眼就可以看见的彗尾。
短周期彗星是轨道周期短于200年的彗星,长周期彗星的轨周期可以长达数千年。短周期彗星,像是哈雷彗星,被认为是来自柯伊伯带;长周期彗星,像海尔·波普彗星,则被认为起源于奥尔特云。有许多群的彗星,像是克鲁兹族彗星,可能源自一个崩溃的母体。有些彗星有着双曲线轨道,则可能来自太阳系外,但要精确的测量这些轨道是很困难的。 挥发性物质被太阳的热驱散后的彗星经常会被归类为小行星。
半人马群
半人马群是散布在9至30 天文单位的范围内,也就是轨道在木星和海王星之间,类似彗星以冰为主的天体。半人马群已知的最大天体是10199 Chariklo,直径在200至250 公里。第一个被发现的是2060 Chiron,因为在接近太阳时如同彗星般的产生彗发,目前已经被归类为彗星。有些天文学家将半人马族归类为柯伊伯带内部的离散天体,而视为是外部离散盘的延续。
外海王星区
在海王星之外的区域,通常称为外太阳系或是外海王星区,仍然是未被探测的广大空间。这片区域似乎是太阳系小天体的世界(最大的直径不到地球的五分之一,质量则远小于月球),主要由岩石和冰组成。
柯伊伯带
柯伊伯带,最初的形式,被认为是由与小行星大小相似,但主要是由冰组成的碎片与残骸构成的环带,扩散在距离太阳30至50 天文单位之处。这个区域被认为是短周期彗星——像是哈雷彗星——的来源。它主要由太阳系小天体组成,但是许多柯伊伯带中最大的天体,例如创神星、伐楼拿、2003 EL61、2005 FY9和厄耳枯斯等,可能都会被归类为矮行星。估计柯伊伯带内直径大于50 公里的天体会超过100,000颗,但总质量可能只有地球质量的十分之一甚至只有百分之一。许多柯伊伯带的天体都有两颗以上的卫星,而且多数的轨道都不在黄道平面上。
柯伊伯带大致上可以分成共振带和传统的带两部分,共振带是由与海王星轨道有共振关系的天体组成的(当海王星公转太阳三圈就绕太阳二圈,或海王星公转两圈时只绕一圈),其实海王星本身也算是共振带中的一员。传统的成员则是不与海王星共振,散布在39.4至47.7 天文单位范围内的天体。传统的柯伊伯带天体以最初被发现的三颗之一的1992 QB1为名,被分类为类QB1天体。
冥王星和卡戎
冥王星和已知的三颗卫星 冥王星(Pluto)(平均距离39 天文单位)是一颗矮行星,也是柯伊伯带内已知的最大天体之一。当它在1930年被发现后被认为是第九颗行星,直到2006年才重分类为矮行星。冥王星的轨道对黄道面倾斜17度,与太阳的距离在近日点时是29.7天文单位(在海王星轨道的内侧),远日点时则达到49.5天文单位。
目前还不能确定卡戎(Charon),冥王星的卫星,是否应被归类为目前认为的卫星还是属于矮行星,因为冥王星和卡戎互绕轨道的质心不在任何一者的表面之下,形成了冥王星-卡戎双星系统。另外两颗很小的卫星,尼克斯(Nix)与许德拉(Hydra)则绕着冥王星和卡戎公转。
冥王星在共振带上,与海王星有着3:2的共振(冥王星绕太阳公转二圈时,海王星公转三圈)。柯伊伯带中有着这种轨道的天体统称为类冥天体。

回答4:

太阳系的形成过程
太阳系的形成和太阳自身演化密不可分,太阳的形成要经历三个时期五个过程,即星云时期、变星时期和主序星时期,五个过程是冷凝收缩过程、快引力收缩过程、慢引力收缩过程、耀变过程和氢燃烧过程,而行星的形成仅仅是太阳演化过程中的副产品,也就是太阳演化到某个阶段才形成了行星和卫星等天体。这是个非常复杂的演化过程,既有规律性,又有特殊性,还有偶然性,本文只略述太阳系的形成过程,不作理论推导和复杂的数学计算,只给出计算的结果。
星云时期(包括冷凝收缩过程和快引力收缩过程)太阳系是银河系的一部分,距银心2.5万光年,在猎户旋臂附近,太阳带领她的大家族以250公里/秒的速度绕银河中心旋转,周期约2亿年,50亿年之前若干亿年太阳系原始星云就在这个位置上。她是巨大的银河系原始气体云团(即星际云)冷缩断裂后分离出来的一小块星云,有初始速度和一定温度(不是高温),星云直径约3000天文单位,其实星云没有明显的边界,是个弥漫的氢气团,密度很低,约10.17克/厘米3,星云质量是太阳质量的1.5——2倍,温度在300K以下,有自转,但很慢,几乎和公转同步,星云主要成分是氢,占71%,其次是氦占27%,其它各种元素占2%,这里面包括从超新星爆发飞来的重元素和金属物质,还有挥发性物质和尘埃等。太阳系原始星云绕银河系中心运转,一开始就有角动量,在冷凝收缩过程中自转加快,就使自转不再与公转同步,又由于星云内侧和外侧到银心距离不等,在绕银心做开普勒运动时形成速度梯度,里快外慢,出现较差转动,星云在银心的潮汐力作用下发生湍动,并形成大大小小的涡流,各个涡流之间相互碰撞和兼并,又形成大的涡旋,最后形成一个更大的中心旋涡,由于星云继续缓慢的冷凝收缩,旋涡自转速度逐渐加快,大量物质开始向旋涡中心汇聚,致使中心区物质密度增大,引力增强,形成中心引力区,于是物质又在引力作用下加快向中心旋落,星云的冷凝收缩逐渐被引力收缩所代替,这时星云已由原来的3000天文单位缩至70天文单位,大约经过几十亿年的时间,其间星云体温度下降到几十K,物质损失较大,部分物质散逸到宇宙空间。
随着星云中心引力区的增强,加快了物质向中心旋落,形成了星云坍缩,进入快引力收缩过程。在星云内部物质从四面八方沿着涡旋方向迅速向中心下落,形成粗细不同的螺旋线式的物质流,星云也逐渐拉向扁平,形成阔边帽式的园盘,螺线状的物质流逐渐演变成四条旋臂,只要角动量不足就不会形成圆环,只能形成旋臂。从正面看犹如缩小的银河系,成旋涡结构,从侧面看类似NGC4594天体(M104),在平行总角动量轴的方向上收缩不受限制,坍缩迅速,增加的引力势能转变为物质的内能,而在赤道平面上收缩受到限制,这是因为受到离心加速度的作用削弱了引力,使收缩缓慢,才形成中央凸起四周扁平的带有旋臂的园盘,从总体看星云仍在继续收缩,角动量仍然向旋臂和中心区转移,当内旋臂收缩到距中心5.2天文单位时,转速逐渐达到13.1公里/秒,自转产生的离心力和中心区的引力相平衡,旋臂就停留在这一位置而不再收缩,但中心区的物质继续快速收缩,中心区与旋臂发生断裂,中心区继续收缩形成原太阳,占星云总质量的99.8%,而四条旋臂的质量还不到0.2%,此时原太阳对旋臂仍有很强的引力作用,同样旋臂也对原太阳有牵制作用,原太阳的自转受到滞后作用,转速渐渐减慢下来,把原太阳的角动量又转移到旋臂上,这时旋臂上物质只要角动量不足还会继续向中心旋落,但到达内旋臂处就不能再落下去了,因此内旋臂物质积累越来越多,而外旋臂物质相对减少了。当四条旋臂逐个达到开普勒轨道速度就演变成四道园环,园环位置按提丢斯—彼得定则分布,分别在木、土、天、海轨道位置上,它们的角动量占星云总角动量的99.5%,这就是太阳系角动量分布奇特的原因。以此种方式形成的拉普拉斯环不存在所需角动量不足的困难。 中心区坍缩成原太阳,物质密度增大,分子间相互碰撞频繁,产生的内部压强逐渐增大,使核心处物质挤压在一起形成星核,并释放大量能量,中心温度升高,增加的热能通过对流方式向外传播,星体呈现微微放热状态,整个星云体类似猎户座KL红外源区一样的天体。星云时期的快引力收缩过程历时很短,大约几千年,我们常说太阳有50亿年的历史,大概就从这时算起吧。
变星时期(包括慢引力收缩过程和耀变过程):星云形成四道园环后,绝大部分质量都集中在中心区百分之一天文单位范围内,物质密度大增,分子间相互碰撞更加频繁,温度升高,压强增大。当内部辐射压和自吸引力接近相等时出现准流体平衡,星体不再收缩或者仅有微小脉动收缩,太阳的雏型基本形成,中心是快速旋转的坚实星核,核外是辐射区,再往外到表面是对流层,原太阳逐渐转入慢引力收缩过程。
原太阳内部物质运动非常复杂,因物质是气态流体,与刚体大不一样,在自转中出现了许多复杂的运动状态,因惯性离心力的作用赤道物质有拉向扁平的趋势,两极处物质必向赤道方向流动,极处物质减少了,但引力的作用是维持球形水准面,所以也必有物质向两极处流去,以补充那里的物质不足,于是在赤道两侧形成旋转方向不同的涡流,并随物质流动渐渐靠近赤道,这就是有名的蝴蝶图,这种状态直保持到现在,如太阳黑子运动。随物质对流和自转相互作用,角动量向赤道转移,从而形成星体的较差自转。核心处高密高压和高温不断增加,扰乱了热平衡梯度,通过混合长把动能和热量向外传输,温度较低的物质向下沉,形成对流,并发展为从内到外的湍流。当中心温度上升到2000K时,氢不能保持分子状态,而变成原子,并吸收大量热能,促使压力骤降,抵不住引力,中心区崩陷为体积更小密度更大的内核,并产生强烈的射电辐射,这些能量辐射可从星体稀薄处穿过而到达星体表面,因而可形成一些亮条,这就是H——H式天体。
星体内部不仅有高速运动分子产生的热能,还有原子级释放的电磁能,核心温度更高,星体自转虽然减慢下来,但星核还是快速自旋,核区附近的等离子体也随之快速旋转,星体磁场产生了,磁力线从两极附近穿出,星体这时产生了射电辐射,而内部热能不断传送到表面,表面温度可达1000K,并放射红光,这种能量传递时起时伏,表面温度也就忽高忽低,表现的星等就是忽大忽小的变化。有时能量积累到一定程度还会发生猛烈地喷发,抛出物质,在几天之内星等可上升5、6个等级,这个时期相当于金牛T型变星期或者类似鲸鱼座UV型耀星期,即为耀变过程。
原太阳中心区的温度逐渐升高,当达到80万K时,氢被点燃发生核聚变,首先是氢和氘聚变为一个氦核,产生光子并释放大量核能,突然猛增千百倍能量,必将产生猛烈地喷发,星体亮度也就突然增亮好多倍,这就是耀星或新星爆发,原太阳进入耀变过程,在这期间内发生过多次猛烈地喷发,释放大量能量和抛射物质,并带走一部分角动量,比较大的喷发有四次。因太阳质量不算太大,就没有更大的全面爆发,仅仅是局部喷发而已。
喷发是从星体内部核反应区开始的,那里的星核自转非常快,可达每秒数百公里。物质具有极高的能量,因此喷出物高温高速,第一次喷出物的质量约是太阳质量的百万分之三,温度一万多度,喷出速度高达每秒616.5公里,呈熔融半流体状态,高速自旋,在飞离原太阳过程中边降温边减速,当它到达目前金星轨道处速度刚好与开普勒轨道速度同步,便留在轨道上绕原太阳运转。仅过几十年,原太阳又发生第二次喷发,喷出物比前次略多些,仍是高温熔融状态,高速自旋,初速度比前次略大,当它进入到现今的地球轨道处便绕原太阳运行。又过数百年,原太阳又发生第三次喷发,这时的星核温度进一步增高,达300万度,发生氘、锂、铍、硼等核反应,释放能量更大,喷出物质没有前两次多,但初速度却大些,其中最大的一个团块进入到现今的火星轨道上,更多的碎块遍布在木星和火星轨道之间,经过三次喷发,原太阳处于暂时休顿状态,持续几千年,但星体中心温度仍在继续升高,当达到700万度时发生四氢聚变氦的质子——质子反应,释放大量光子和能量,原太阳发生第四次猛烈喷发,这次喷发物是太阳质量的千万分之二,初速度比前三次都大,因此飞出更远,其中一块较大的喷出物撞击在天王星边缘,溅起的物质碎块抵达海王星轨道处,更多的碎块遍布太阳系空间,有的飞出海王星的外侧。这时原太阳表面温度上升到数千度,放热发光。一个光芒四射的恒星即将诞生。原太阳在变星时期大约有4亿年。
主序星时期(包括氢燃烧过程和未发生的氦燃烧过程):原太阳经过几次耀变逐渐趋于稳定状态,进入氢燃烧过程,释放核能,星核中心核反应区温度可达1500万度,核反应出现碳氮循环反应,但大量的还是质子——质子反应,核中心密度达160克/厘米3,中心压力3.4×1016帕,抵住星体的引力收缩,达到新的热平衡梯度,不再发生喷发现象,进入相对稳定期。这时星体表面温度达5770K,成为G型星,太阳辐射主要是电磁辐射和带电粒子流,外层大气不断发射的稳定粒子流——即太阳风,驱散星周物质,使太阳更加明朗了,成为一颗年轻的主序星。太阳在主序星期已有46亿年了。太阳活动仍在继续中,表现为11年一个周期,说明太阳还在继续演化中。当太阳中心温度达到1亿度,氦核聚变为碳核和氧核反应,进入氦燃烧过程。
类木行星和规则卫星的形成:原始星云在快引力收缩过程形成的四道园环,恰在海、天、土、木四颗类木行星的轨道上,环内物质受中心天体的引力作用有向内运动的趋势,还受惯性离心力作用有向外运动的趋势,同时还有开普勒较差转动的影响,必造成环物质形成大大小小的涡流,并相互碰撞和兼并,由小涡流变成大漩涡,最后形成一个带有若干条旋臂(至少有四条大旋臂)的大旋涡和孤立的小漩涡,物质向漩涡中心汇聚,形成中心引力区,加快了引力收缩,自转速度更快了,惯性离心力也就更大了,当离心力和中心体引力平衡时,星体就不再收缩,旋臂的旋转速度达到开普勒轨道速度时就演变成卫星园环,形成阔边帽式的天体,又经过引力吸积,清除行星轨道环上的物质,逐渐演变成原行星。 原始星云密度是梯度分布,越往里密度越大,外部密度小,还因部分物质向内转移,所以外侧两道环形成的两颗行星质量就小,这就是海王星和天王星,内侧两道环形成的两颗行星质量就大,这就是土星和木星,各行星内部都有坚实的星核,温度高达数千度,最高可达3万度,中心压力为1012帕以上,但还不够点燃氢的条件,没有发生核聚变反应,产能机制仍然是引力势能转变而来的热能和释放原子级的电磁能,星核的高速旋转形成磁场,内部热能通过对流传送到星体表面,因此类木行星都有放热现象和强度不同的射电辐射。木星的大红斑便是内部热能向外传输过程中形成的涡流,类木行星表面温度都很低,呈液态状,因星体是在收缩过程中形成的,为保持角动量守恒,自转就快一些。
中心体形成行星之后,周围的卫星园环在远离洛希极限处只要达到洛希密度都可以形成卫星,孤立的小漩涡也能形成小卫星,这样的卫星都是规则卫星,但在洛希极限附近及内侧受本星体的潮汐作用,不会形成卫星,只能以环的形式存在,因此四颗类木行星最初都有一个庞大壮观的光环。
类地行星、月球和冥王星等的形成:原太阳在耀变过程有四次猛烈地喷发,高温熔融半流体状的喷出物在进入金星、地球和火星轨道处绕原太阳旋转,成为原行星。在金星轨道的原行星质量约为5.2×1027克,半径6165公里,自转周期2.72小时,自转线速度为3.95公里/秒,由于原星体是从高温熔融状态凝固而成,所以星体成粘稠状,粘滞系数很大,这时星体内部还没有发生分异作用,在高速自旋中受惯性离心力的作用将星体拉成长球形,同时在原太阳引力的长期摄动下,长球形又逐渐变成一端大一端小的纺锤形,随时间推移,纺锤形被拉开形成两颗姊妹星,一大一小,互相绕着转。根据角动量守恒原理,二星距离逐渐增大,绕转速度就变慢,当二星相距60万公里时,它们绕质心的自转几乎和绕太阳的公转同步。当二星距离接近61.6万公里时,小星绕到大星的内侧(即靠近原太阳这边),太阳对小星的引力等于两颗姐妹星之间的引力,小星就不再转到大星的外侧了,而是二星共同绕原太阳公转,这时二星自转周期与公转周期相等。但开普勒轨道是离太阳近速度大,离太阳远速度小,在内侧的小星轨道速度比大星轨道速度大,小星逐渐运行到大星的前面,同时在引力磨擦作用下将大星拉转成逆向自转,而自身也拉成顺向自转,但自转很慢,随时间推移,小星渐渐离开原有轨道而进入一条新的绕太阳轨道,又经过若干周期形成了今天的水星轨道,原有的姊妹星变成了金星和水星。因此水星的偏心率和倾角都大,自转周期略小于公转周期,而留在原轨道上的大星就是金星,它被拉成逆向自转,同时拉斜一点,倾角略微偏大一些。
进入到地球轨道的第二次喷出物质量是6.05×1027克,半径为6444公里,自转周期5小时,自转线速度2.2公里/秒,和上次同样,从高温熔融状态凝固而成,星体内刚好要发生分异作用,受快速自转的离心力作用和太阳的摄动,也是分离成一大一小的姊妹星,互绕质心共同转动,由于太阳长期摄动,二星距离渐渐拉大,自转也就逐渐变慢,直到今天地球和月球的位置,地球自转周期为24小时,月球自转和绕地球公转同步,总是一面朝向地球。地月分离证据可在月球上找到,在月球朝向地球一面有个300米高的突起部分便是地月分离处的证据,地球上的分离处不易看到,其位置可能在非洲,而不象有的人所说月球是从太平洋分离出去的,如今月球仍以每年3厘米的速度远离地球,可以推想再过若干万年月球也会从地球身边跑掉,而进入太阳系内成为一颗新行星。
原太阳的第三次喷出物有一大块进入火星轨道后形成了火星和火星卫星,但是火星的卫星后来遭受一次小行星的猛烈碰撞,将它撞裂,并使轨道向火星方向内移,形成了今天的火卫一,另一碎块成为火卫二。
喷出物还有大量碎块进入火星和木星轨道之间,逐渐冷凝形成小行星。
还有一些碎块被类木行星俘获形成不规则卫星,当然也有碎块和尘埃进入光环和降落在其它天体上。
原太阳第四次喷发比前三次猛烈得多,喷出物数量与第三次的差不多,初速度较大,喷出的物质遍布整个太阳系空间,其中有一大团块快速自旋,质量约是冥王星的30倍,以617.49公里/秒的速度从原太阳喷发而出,进入到天王星轨道时正从天王星自转轴上方斜冲下来,撞击在天王星边缘上,把它的角动量传递给天王星,并随天王星一起转动98°角,使天王星躺在轨道上自转,同时在撞击处溅起两大块物质和若干碎块,在从天王星区飞出时形成一列,速度逐渐减慢下来,在进入海王星轨道时,前面一个质量为1.3×1025克,速度为4.7公里/秒,紧跟在后面的一块质量为1。77×1024克,还有一些碎块,最后面的一个质量为2.2×1025克,速度为4。4公里/秒,它们正好从海王星内侧(靠近太阳的一边)相距36万公里处飞过,而这个位置恰是海王星卫星的开普勒轨道,所以它们又被海王星俘获为卫星,并从海王星前面绕过来,成为逆行轨道卫星,而前面的一个因为速度略大,形成的轨道偏心率就大,它的远星点必在朝向太阳的方向,也许经过几个周期(或者仅一个周期),当它到达海王星的远星点时恰受太阳引力作用又绕太阳运转,成为太阳的一颗新行星,这就是冥王星,同时把它后面紧随而来的那个小块一同带走,成为绕冥王星的一颗卫星卡戎,所以冥王星轨道才有17°倾角和0.25的偏心率,其轨道又与海王星轨道有交会处。当然那个质量为2.2×1025克的大块就绕海王星逆行,成为海卫一了。海卫一上面少有陨坑,说明它是较后期形成的,缺少陨星撞击。
第四次喷发出来的碎块物质遍布整个太阳系空间,有的被大行星俘获成为卫星,有的降落在各天体上变成陨星,还有的进入到四颗类木行星的光环里和小行星带里,还有一部分飞到海王星外侧,形成柯伊伯带。当然不排除后来有少量的彗星物质也进入到柯伊伯带里,估计还会有一些碎块飞出太阳系。

回答5:

行 星 的 形 成

类 地 行 星 是 经 由 碰 撞 聚 集 固 态 的 物 质 颗 粒 成 为 微 小 行 星 , 再 聚 集 微 小 行 星 形 成 的 (类 地 行 星 形 成 示 意 图)。

类 木 行 星 以 水 冰 相 互 吸 附 为 起 点 , 质 量 够 大 后 , 进 一 步 吸 附 氢 、 甲 烷 , 形 成 气 体 行 星

类 地 行 星 与 类 木 行 星

太 阳 系 的 行 星 大 致 可 分 为 两 大 类 :

类 地 行 星

成 员 包 括 有 水 星 、 金 星 、 地 球 、 火 星 。

是 小 而 密 的 岩 石 世 界 , 具 有 较 稀 少 的 大 气 。
行 星 的 形 成

类 地 行 星 是 经 由 碰 撞 聚 集 固 态 的 物 质 颗 粒 成 为 微 小 行 星 , 再 聚 集 微 小 行 星 形 成 的 (类 地 行 星 形 成 示 意 图)。

类 木 行 星 以 水 冰 相 互 吸 附 为 起 点 , 质 量 够 大 后 , 进 一 步 吸 附 氢 、 甲 烷 , 形 成 气 体 行 星

类 地 行 星 与 类 木 行 星

太 阳 系 的 行 星 大 致 可 分 为 两 大 类 :

类 地 行 星

成 员 包 括 有 水 星 、 金 星 、 地 球 、 火 星 。

是 小 而 密 的 岩 石 世 界 , 具 有 较 稀 少 的 大 气 。

内 部 结 构 : 中 心 有 金 属 核 心 , 外 为 石 质 的 地 壳 所 包 围 , 表 面 有 相 当 多 的 坑 洞 , 平 均 密 度 约 为 3-5 g/cm3 。

类 木 行 星

成 员 包 括 有 木 星 、 土 星 、 天 王 星 、 海 王 星 。

是 体 积 大 、 质 量 大 、 但 是 密 度 小 的 气 体 世 界 , 具 有 浓 密 的 大 气 。 平 均 密 度 约 ≤ 1.75 g/cm3, 土 星 的 密 度 约 为 0.7 g/cm3, 木 星 质 量 约 为 地 球 的 318 倍 。

结 构 : 由 内 而 外 , 中 心 有 岩 石 核 心 、 液 态 金 属 氢 、 液 态 分 子 氢 、 充 满 气 体 的 大 气 层 ,表 面 有 漩 涡 状 的 云 层 。 另 有 行 星 环 及 为 数 众 多 的 卫 星 环 绕 著太 阳 系 的 九 大 行 星 , 以 太 阳 为 中 心 依 序 为 :水星(Mercury)、金星(Venus)、地 球(Earth) 、 火星(Mars)、木星(Jupiter)、土星(Saturn)、天王星(Uranus)、海王星(Neptune) 、冥王星(Pluto)。 图 中 各 行 星 的 大 小 代 表 其 真 实 的 相 对 大 小 。 九 大 行 星 的 顺 序 常 易 混 淆 , 下 列 的 记 忆 法 或 许 有 帮 助

到底谁是太阳系中最远的行星?

从1999年2月11日开始,冥王星终於变成太阳系中名符其实的最远的行星。根据JPL天文学家们的计算,从国际标准时(UT)9:08a.m.(中原标准时间17:08)开始的228年内,冥王星都会是离太阳最远的行星。

1930年2月18日,Clyde Tombaugh研究Lowell天文台望远镜所拍摄的天空照片时发现了冥王星。冥王星绕日周期为248年,轨道倾角约为17度,轨道偏心率约为0.2480。它主要是由岩石和冰所组成,有四季的变化。冥王星只有一颗卫星,名为查龙(Charon),在1978年才发现它的存在。由於冥王星轨道倾角及偏心率都比其他行星大很多,也就是说,冥王星近日点附近的轨道,有部份会落在海王星轨道的内侧(见附图),所以从1979年2月7日开始到1999年2月11日为止的20年间,冥王星至太阳的距离比海王星还近。

这样看来,2月11日时,冥王星会不会和海王星发生碰撞呢?答案是:不会!为什麼呢?冥王星和海王星若要相撞,则两者必须同时到达它们的轨道交点。冥王星和海王星的会合周期大约是497年,即冥王星每绕日二周,海王星已绕日三周。所以每当冥王星经过轨道交点的时候,海王星总会绕到别的地方,发生碰撞的机会微乎其微。此外,冥王星相对於黄道面的轨道倾角比其他行星都大很多,也是不会发生碰撞的原因之一。

冥王星的直径大约是2300公里左右,在所有行星中,它比类地行星(水、金、地、火)小很多,甚至比月球还小;它的性质跟巨大且为气态的类木行星(木、土、天王、海王)不一样;轨道倾角及偏心率也都比其他行星大很多。所以有些天文学家认为冥王星应不属於「行星」一族,而应是归类於「库伯带(Kuiper Belt)」的成员。库伯带位於海王星和冥王星轨道外的区域,带中的天体都比冥王星小很多,而且大多是由冰所组成,可能是太阳系演化早期的残片。不过,冥王星的外形是成圆球形,与这些库伯带天体多为不规则状又有些许的不同;而且冥王星很规律地绕日旋转,所以,在经过众多争议之后,它仍被归为「行星」族。

所以我们对冥王星的认识非常有限。美国太空总署(NASA)下所属的喷射推进实验室(JPL)目前正在进行一个称为「冥王星w伯带(Pluto-Kuiper Express)」的计画,预计在公元2004年发射太空船,大约再10年之后,太空船就会飞掠冥王星和查龙,并探测库伯带中的天体。

水星的小档案::

平均日距 57,910,000 km (0.38 AU)

直径 4,878 km

质量 3.30e23 kg

密度 5.43 gm/cm

重力 0.376 G

公转 87.97 地球天

自转 58.65 地球天

水星是最靠近太阳的行星,由於水星距离太阳实在太近了,表面温度很高,太空船不易接近,在地球上也不容易观测,因为可观测的时间都集中在清晨太阳出来的前几分钟,和夕阳落下后的几分钟,时间不容易掌握,而且,在背景亮度尚高的情况下,要去找一颗比月亮大不了多少的水星,实在不是件轻松的事水星是最靠近太阳的行星,所以它运行的速度比其他行星都快,每秒的速度接近48公里,并且不到88天就公转太阳一周。水星非常小(九大行星中 仅有冥王星比它小),是由岩石构成的,表面布满被流星撞击而形成的环形山和坑洞,另外有平滑,稀疏的坑洞平原。水星表面另外还有山脊,这是行星在40亿年前核心逐渐冷却与收缩所形成的,因此表面起伏不平。水星自转的速度非常缓慢,自转一周将近59个地球日,所以水星的一个太阳日(从日出到另一个日出)差不多要176个地球日—相当於水星一年88日的两倍长。水星的表面温度很悬殊, 向阳面高达摄氏430度,阴暗面则在摄氏零下170 度。当黑夜降临时,由於水星几乎没有大气层温度下降很快。大气成分包括由太阳风所捕捉到的微量氦和氢,或许还有一点其他的气体。

金星的小档案:

平均日距 108,200,000 km (0.72 AU)

直径 12,103.6 km

质量 4.869e24 kg

密度 5.24 gm/cm

重力 0.903 G

公转 224.7 地球天

自转 243 地球天

金星是太阳系第二颗行星,全天最亮的行星就是金星,通常是在清晨或傍晚才看得到,最亮时的亮度可超过 -4,有如一盏挂在山边的路灯,一般的望远镜即可观测,常可看到如月球的盈亏现象。在古代的西方世界,金星代表著美丽的女神金星是一颗岩石构成的行星,也是距离太阳第二远的行星。金星在绕太阳公转的同时也缓慢的反方向自转,因此使它成为太阳系中自转周期最长的行星,大约需243个地球日。

金星比地球稍微小一点,内部构造或许也类似。金星是除了太阳与月球外,天空中最亮的天体,这是因为它的大气层能强烈的反射阳光。大气层的主要成分是二氧化碳,它能在温室效应下吸收更多的热,因此,金星成了最热的行星,表面高温度可达摄氏480度。厚的云层内含有硫酸的小滴,并由风以每小时接近360公 里的速度吹向行星各处。虽然金星需要243个地球日才能自转一周,但高速的风只需4个地球日就把云吹得环绕行星一圈。高温、酸云和极高的大气压力,(大约是地球表面的90倍),显示金星的环境恶劣。

地球的小档案:

平均日距 149,600,000 km (1.00 AU)

直径 12,756.3 km

质量 5.976e24 kg

密度 5.52 gm/cm

重力 1 G(9.8 m/s2)

公转 365.26 地球天

自转 1 地球天

美丽的地球,生命的奇迹,是宇宙的巧合或是上帝的杰作?地球是太阳系第三颗行星,有一卫星称为月亮,地球大气层的保护及距离太阳位置的适当,是生命起源的重要条件。

地球是距离太阳第三远的行星,也是直径最大和比重最大的岩石行星,同时也是唯一 己知有生命存在的行星。地球内部的岩石和金属显示它是一颗典型的板块组成,由於板块推挤,因此交界处会发生地震和火山等活动。地球的大气层和同一张保护层,它能阻挡来自太阳有害人体的辐射,并防止流星撞击行星表面,除此之外,还能积存足 够的热,防止气温急遽下降。地球表面有百分之七十为水所包围,其他行星的表面都未发现这类液态形式的水。地球有一个天然卫星——月球,它大得足以把这两个天体视为一个双行星系统。

火星的小档案:

平均日距 227,940,000 km (1.52 AU)

直径 6,794 km

质量 6.4219e23 kg

密度 3.94 gm/cm

重力 0.38 G

公转 686.98 地球天

自转 1.026 地球天

火星是太阳系第四个行星,在晴朗的夜空裏,代表战神的火星闪著火色的光芒,吸引著古今千万人的视线。十万年前有一颗来自火星的岩石坠落於地球的极区,冰封。人们在此陨石裏发现了,可能是生命所留下的痕迹化石,这化石是三十亿年前在火星上形成的,科学家正积极的研究,并探测这颗表面充满神密河道及火山的星球,火星上曾经有生命吗?

生命如何形成

火星即常所说的红色行星,火星是太阳系中第三小的行星直径约为地求的二分之一,体积约为地球的十分之一,表面的重力约地球的三分之一强。火星的大气层比地球稀薄,只有地球大气层的百分之一,主要成分是二氧化碳。同时还有少量的云层和晨雾。因为大气层很薄,在火星上没有温室效应。火星赤道附近温度白天可达到27C,在夜晚可降至零下111C。

火星的北半球有许多由凝固的火山熔岩所形成的大平原,南半球有许多环形山与大的撞击盆地,另外还有几个大的、己熄灭的火山,例如奥林帕斯山,宽600公里,还有许多峡谷和分岔的河床。峡谷是 地壳移动所 造成的而河床一般认为是己乾涸的河流形成的。在火星上高纬度的地方,冬天时由於温度太低,大气中的二氧化碳会冻结,而在五十公里高的地方形成云,到了春天便消失。夏天时由於日照强烈,地面温度很高,地面附近的大气 因受热而产生强劲的上什气流。这个股气流会将地面的灰尘往上卷,在空中吸收阳光的热而进一步提高大气的温度,使上升的速度增快,因此火星上常可看到大规模的暴石砂。

火星上最大的火山-------奥林柏斯山,高出地面24公里,几乎是地球上最高山3倍,同时也是太阳系最高的山。

木星的小档案:

平均日距 778,330,000 km (5.20 AU)

直径 142,984 km (equatorial)

质量 1.900e27 kg

密度 1.31 gm/cm

重力 2.34 G

公转 11.86 地球年

自转 0.414 地球天

木星是太阳系第五颗行星,也是整个太阳系最大的行星,位於火星於土星之间,用一般的天文望远镜(60mm 72倍)即可看到它表面的条纹及四颗明亮的卫星,是全天第二亮的行星仅次於金星,木星的亮度最高可超过 -2。木星是距离太阳第五远的行星,也是四大气体行星中的第一个 。它是最大且重的行星,直径有地球的11倍,质量是其他八个行星总和的2.5倍。木星可能有个小的石质核心 ,四周是由金属氢(液态氢,性质如同金属)所构成的内地函。内土诡函的外面是由液愈氢和氦所构成的 外地函,它们融合成气态的大气层。木星的快速自转使大气层中的云形成带状与区层 稳定的乱流形成白与红斑等特别的云,这两种都是巨大的风暴。最有名的云是一个称为大红斑的风暴,它由一个比地球宽三倍, 升起於高云之上约七公里的旋涡圆 柱状云所构成。

木星有一个薄、暗的主环,里面有个由朝向行星延伸的微粒所形成稀薄光环。目前己知有16个卫星。四个最大的卫星(称为伽利略木卫)是甘尼八德、卡利斯、埃欧和 欧罗巴。甘尼八德与卡利斯多表面有许多坑洞,或许还有冰。欧罗巴表面表滑, 并覆著冰,或许还有水。埃欧表面有许多发亮的红色、橘色和黄色的斑点。这些颜色来自於活火山的硫磺物质,由喷出表面高达数百公里的绒毛状熔岩所造成的。

土星的小档案:

平均日距 1,429,400,000 km (9.54 AU)

直径 120,536 km (equatorial)

质量 5.688e26 kg

密度 0.69 gm/cm

重力 1.16G

公转 29.46 地球年

自转 0.436 地球天

土星是太阳系第六颗行星,也是体积第二大的行星,有著美丽的环,在地球以一般的望远镜即可看见,土星、木星、天王星和海王星表面都是气体,故自转都相当快。土星的环主要是由冰及尘粒构成,据科学家推测,可能是因某卫星受不了土星强大的吸引力而解体成碎片。

土星的环平面与土星公转面不在同一个平面上,故当土星公转至某一位置时,土星的环平面刚好与我们的视线平行,我们在地球上便无法看到此一土星环,因为土星环实在太薄了,我们无法从侧面看到,另外,当土星环与阳光平行时,因环平面没有受光,故我们也无法看到。

土星是从太阳算起的第六颗行星,也是一个几乎和木星一样大的气体巨星,赤道直径约 120500公里。土星可能有一个岩石与冰构成的小核心,周围是金属氢(液态氢,性质如同金属)构成的内地函。在内地函的外面是是由液态氢构成的外地函、融合成为气态的大气层。

土星的云层形成带状与区层,颇似木星,但由於外层的云薄而显得较模糊。风暴和漩涡发生在云中,看起来为呈红或白色椭圆。

土星有一个极薄但却很宽的环状系统,虽然厚不到一公里,却从行星表面朝外延伸约420000公里。主环包括数千条狭窄的细环, 由小微粒和大到数公尺宽的冰块所构成。土星己有18颗卫星,其中有些在光环内运行, 这会施加重力,影响到环的形状。有趣的是,卫星中的7颗为共内轨道,与别的卫星分享同一个轨道。天文学家相信这些共用轨道的卫星为来自同一,但后来碎裂的卫星。

天王星的小档案:

平均日距 2,870,990,000 km (19.218 AU)

直径 51,118 km (equatorial)

质量 8.686e25 kg

密度 1.28 gm/cm

重力 1.15G

公转 84.81 地球年

自转 0.72 地球天

天王星是太阳系第七颗行星,在太空船未到以前,人类并不知道它也有如土星一样美丽的环,天王星是人类用肉眼所能看到的最远的一颗行星,但,如果你没有受过专业的训练的话,是很难在众星裏寻到的天王星(Uranus)的最大特徵是自转的倾斜度很大。一般行星的自转轴与其公转面都很接近垂共直,唯独天王星的自转轴成九十八度的倾斜,几乎是横躺著运行。因此, 太阳有时整天都照在北极上,而这时的南半球就全天黑暗。天王星表面发出带有白色的蓝绿光彩,因此推测它的大气可能含有很多甲烷。而天王星的直径约为地球的四倍,质量约十四倍,但密度却不及地球的四分之一,这是因为天王星与其他木星型行一样,它们都是以氢、氦等气体为主要成分形成的。

九条细环天王星的赤道上空也有九条环,这九条环合起来的宽度约十万公里,大约为土星环三分之一宽。天王星的环之构造及成分与土星及木星的环大不相同,土星环是由几千条环夹著很狭窄的空隙形成的,而天王星的九条环却彼此都隔得很远。九条环中内侧的八条宽约十几公里,最外侧的一条则宽达一百公里以上。
冥王星的小档案:

平均日距 5,913,520,000 km (39.5 AU)

直径 2340 km

质量 1.32e22 kg

密度 2.03 gm/cm

重力 ?

公转 247.7 地球年

自转 6.39 地球天

冥王星是太阳系第九颗行星,也是最后一颗行星,冥王星实在太远太小了,比我们的月亮还小,比月亮还远一万三千多倍远,以致於用再好的光学天文望远镜也无法很清楚的看清它的表面,除非太空船能接近,否则无法解开冥王星之谜,目前仅知冥王星有一个卫星,而冥王星之外是否还有其他的行星,则是科学家正在研究之事,仅有间接证据显示,我们这个太阳系似乎还第十颗行星,不过愈来愈多的证据显示,海王星之外并没有其他的行星存在,在海王星之外可能是为数不少的小星体,称之为库伯带天体,冥王星可能也是其中之一冥王星(Pluto)在平时是距离太阳最远也最小的行星,但因为它的轨道是椭圆形的,所以在它248年的公转期间内,有20年会叉入海王星轨道的内侧;但冥王星的公转面与黄道面呈十七度的倾斜,因此不会有相撞的可能。冥王星是 如此的小又远,我们对它所知也就有 限。它是一个石质行星,表面可能盖冰和冰冻的甲烷。

海王星的小档案:

平均日距 4,504,000,000 km (30.06 AU)

直径 49,528 km (equatorial)

质量 1.0247e26 kg

海王星是太阳系第八颗行星,有八颗卫星,海王星表面主要也是气体组成,也有类似木星表面的大红斑风暴云,我们称之为大黑斑,这个大风暴约是木星大红斑的一半,但也容得下整个地球。海王星亦有如土星的环,只是此环比天王星更细小 。

由冰粒形成的木星环及土星环看起来非常明亮,但天王星竹环是由碳粒石或岩石粒形成的,所以非常暗淡海王星和冥王星是离太阳最远的两颗行星,平均距离分别为45亿公里和59亿公里。海王星是一个巨大的气体行星,有小的石质核心,周围由液态与气态的混合体所组成。大气层内的云有显著的特微,其中最明显的是大黑斑,如地球般宽,还有小黑斑与速克达。大、小黑斑都是巨大的风暴,以每小时2000公里的速度吹遍整个行星。速克达是范围很广的卷云。海王星有四个稀薄的环和8颗卫星。崔顿是海王星最大的卫星,也是太阳系中,最冷的星体, 温度在摄氏零下235度。有别於太阳系中大部分的卫星,崔顿是以海王星自转的反方向来绕其母行星运行。

海王星的四个又窄且暗细环,这环被造成原因是由微小的陨石猛烈的撞击海王星的卫星所造成灰尘微粒而形成。
参考资料:香港天文台
回答者: 渡渡龙 - 魔法学徒 一级 5-2 19:43
查看用户评论(2)>>
评价已经被关闭 目前有 1 个人评价

100% (1) 不好
0% (0)
相关内容
• 有关太阳系的资料
• 太阳系的资料
• 给我找一些太阳系的资料
• 提供一下太阳系的资料
• 太阳系有关资料
更多相关问题>>
查看同主题问题:太阳系
其他回答 共 2 条
太阳系是由太阳、行星及其卫星、小行星、彗星、流星和行星际物质构成的天体系统,太阳是太阳系的中心。在庞大的太阳系家族中,太阳的质量占太阳系总质量的99.8%,九大行星以及数以万计的小行星所占比例微忽其微。它们沿着自己的轨道万古不息地绕太阳运转着,同时,太阳又慷慨无私地奉献出自己的光和热,温暖着太阳系中的每一个成员,促使他们不停地发展和演变。

在这个家族中,离太阳最近的行星是水星,向外依次是金星、地球、火星、木星、土星、天王星、海王星和冥王星。它们当中,肉眼能看到的只有五颗,对这五颗星,各国命名不同,我国古代有五行学说,因此便用金、木、水、火、土这五行来分别把它们命名为金星、木星、水星、火星和土星,这并不是因为水星上有水,木星上有树木才这样称呼的。而欧洲呢,则是用罗马神话人物的名字来称呼它们。近代发现的三颗远日行星,西方按照以神话人物名字命名的传统,以天空之神、海洋之神和冥土之神的名称来称呼它们,在中文里便相应译为天王星、海王星和冥王星。

九大行星与太阳按体积由大到小排序为太阳、木星、土星、天王星、海王星、地球、金星、火星、水星、冥王星。它们按质量、大小、化学组成以及和太阳之间的距离等标准,大致可以分为三类:类地行星〈水星、金星、地球、火星〉;巨行星〈木星、土星〉;远日行星〈天王星、海王星、冥王星〉。它们在公转时有共面性、同向性、近圆性的特征。在火星与木星之间存在着数十万颗大小不等,形状各异的小行星,天文学把这个区域称为小行星带。除此以外,太阳系还包括许许多多的彗星和无以计数的天外来客——流星。