灰色关联度分析法是一种多因素统计分析方法,它是以各因素的样本数据为依据用灰色关联度来描述因素间关系的强弱、大小和次序,若样本数据反映出的两因素变化的态势(方向、大小和速度等)基本一致,则它们之间的关联度较大。
反之,关联度较小。此方法的优点在于思路明晰,可以在很大程度上减少由于信息不对称带来的损失,并且对数据要求较低,工作量较少;其主要缺点在于要求需要对各项指标的最优值进行现行确定,主观性过强,同时部分指标最优值难以确定。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
扩展资料:
灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态历程分析。
因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示。
灰色关联度分析法是将研究对象及影响因素的因子值视为一条线上的点,与待识别对象及影响因素的因子值所绘制的曲线进行比较,比较它们之间的贴近度,并分别量化,计算出研究对象与待识别对象各影响因素之间的贴近程度的关联度,通过比较各关联度的大小来判断待识别对象对研究对象的影响程度。
参考资料来源:百度百科——灰色关联分析法
灰色关联度分析法是一种多因素统计分析方法,它是以各因素的样本数据为依据用灰色关联度来描述因素间关系的强弱、大小和次序,若样本数据反映出的两因素变化的态势(方向、大小和速度等)基本一致,则它们之间的关联度较大。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
灰色关联度分析:
(1)确定反映系统行为特征的参考数列和影响系统行为的比较数列
反映系统行为特征的数据序列,称为参考数列。影响系统行为的因素组成的数据序列,称比较数列。
(2)对参考数列和比较数列进行无量纲化处理
由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
以上内容参考:百度百科-灰色关联度法
灰色关联度分析法是一种多因素统计分析方法,它是以各因素的样本数据为依据用灰色关联度来描述因素间关系的强弱、大小和次序,若样本数据反映出的两因素变化的态势(方向、大小和速度等)基本一致,则它们之间的关联度较大;反之,关联度较小。此方法的优点在于思路明晰,可以在很大程度上减少由于信息不对称带来的损失,并且对数据要求较低,工作量较少;其主要缺点在于要求需要对各项指标的最优值进行现行确定,主观性过强,同时部分指标最优值难以确定。