当x=0是 f(0)=0
当x<>0时
f(x)=3/(x+1/x)
研究下 x+1/x的 单调区间 知 在-1
则F(x)在 在-1
讨论函数f(x)=3x/(x^2+1)的单调性,并加以证明
x2>x1>0
f(x1)-f(x2)=3x1/(x1^2+1) -3x2/(x2^2+1)
=[3x1(x2^2+1)-3x2(x1^2+1)]/(x1^2+1)(x2^2+1)
=(3x1x2^2+3x1-3x2x1^2-3x2)/(x1^2+1)(x2^2+1)
=[3x1x2(x2-x1)+3(x1-x2)]/(x1^2+1)(x2^2+1)
=[3x1x2(x2-x1)-3(x2-x1)]/(x1^2+1)(x2^2+1)
= [3(x1x2-1)(x2-x1)]/(x1^2+1)(x2^2+1)
x2-x1>0, x1x2-x1^2>0
所以f(x2)-f(x1)<0,单调递减