大一高数函数题,证明不等式。

2024-12-27 06:55:00
推荐回答(1个)
回答1:

令f(x)=sinx/x,(π/2<=x<=π),则f'(x)=(xcosx-sinx)/x^2<=0
所以f(x)在[π/2,π]上单调递减
所以0=sinπ/π<=sinx/x<=sin(π/2)/(π/2)=2/π
根据积分中值定理,存在k∈[π/2,π],使得∫(π/2,π)
sinx/xdx=(π/2)*sink/k
所以0<=(π/2)*sink/k<=1
即0<=∫(π/2,π)
sinx/xdx<=1