一)两角和差公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA ?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
二)用以上公式可推出下列二倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
(上面这个余弦的很重要)
sin2A=2sinA*cosA
三)半角的只需记住这个:
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
四)用二倍角中的余弦可推出降幂公式
(sinA)^2=(1-cos2A)/2
(cosA)^2=(1+cos2A)/2
五)用以上降幂公式可推出以下常用的化简公式
1-cosA=sin^(A/2)*2
1-sinA=cos^(A/2)*2
一、集合与简易逻辑:
一、理解集合中的有关概念
(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。
集合元素的互异性:如: , ,求 ;
(2)集合与元素的关系用符号 , 表示。
(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。
注意:区分集合中元素的形式:如: ; ; ; ; ;
;
(5)空集是指不含任何元素的集合。( 、 和 的区别;0与三者间的关系)
空集是任何集合的子集,是任何非空集合的真子集。