计算二重积分∫∫(x+y)dxdy,其中D为x^2+y^2≤2x

2024-12-18 02:38:41
推荐回答(2个)
回答1:

简单计算一下即可,答案如图所示

回答2:

楼上错的,楼上当作矩形区域算了
首先本题区域关于x轴对称,y关于y是一个奇函数,因此积分为0,所以被积函数中的y可去掉.
∫∫(x+y)dxdy
=∫∫xdxdy
用极坐标,x²+y²=2x的极坐标方程为:r=2cosθ
=∫[-π/2---->π/2] dθ∫[0---->2cosθ] rcosθ*rdr
=∫[-π/2---->π/2] cosθdθ∫[0---->2cosθ] r²dr
=∫[-π/2---->π/2] (cosθ)*(1/3)r³ |[0---->2cosθ] dθ
=(8/3)∫[-π/2---->π/2] cos⁴θ dθ
=(16/3)∫[0---->π/2] cos⁴θ dθ
=(16/3)∫[0---->π/2] [1/2(1+cos2θ)]² dθ
=(4/3)∫[0---->π/2] (1+cos2θ)² dθ
=(4/3)∫[0---->π/2] (1+2cos2θ+cos²2θ) dθ
=(4/3)∫[0---->π/2] (1+2cos2θ+1/2(1+cos4θ)) dθ
=(4/3)∫[0---->π/2] (3/2+2cos2θ+1/2cos4θ) dθ
=(4/3)(3/2θ+sin2θ+1/8sin4θ) |[0---->π/2]
=(4/3)(3/2)*(π/2)