设函数y=(1+x)ln(1+x)-x
求导得:y的导=(1+x)*(1/(1+x))+ln(1+x)-1=ln(1+x)
很显然在x>0时,ln(1+x)>0恒成立,所以函数y在x>0时为增函数。
现在考虑初值x=0时,y=0
所以在x>0时,y>0,
即当x>0时,(1+x)ln(1+x)>x
设f(x)=ln(1+x)-x+1/2x^2
f'(x)=1/(x+1)-1+x=(1-x-1+x^2+x)/(x+1)=(x^2)/(x+1)
由于x+1>0,故有f'(x)>=0
即函数f(x)在x>0上是单调增的.
即有f(x)>f(0)=ln1-0+0=0
即有f(x)>0
所以有ln(1+x)>x-1/2x^2