f(0) = 0,
f'(x) = e^(-x^2) = ∑
f(x) = ∫<0, x>f'(t)dt + f(0) = ∫<0, x>∑
= ∑
是不是 将 1/(1-2x) 展开成x的幂级数啊?
根据泰勒公式,以下二项式展开成幂级数的形式为
(1+y)^m=1+my+m(m-1)/2!*y^2+...+m(m-1)...(m-n+1)/n!*y^n+...
将y=-2x 和 m=-1代入,就可以得到:
1/(1-2x) = 1+2x+2!/2!*(-2x)^2+...+(-1)^n*n!/n!*(-2x)^n+...
=1+2x+2^2*x^2+...+2^n*x^n+...