分母通式是n(n+1)/2
所以每一项通式为2/[n(n+1)]=2[1/n-1/(n+1)]
原式=2{1/1-1/2+1/2-1/3+1/3-4-1/4+……+1/50-1/51}=2(1-1/51)=100/51
(1+2)=(1+2)×2÷2=3
(1+2=3)=(1+3)×3÷2=6
(1+2+3+4)=(1+4)×4÷2=10
(首项+末项)×乘以项数÷2
然后再细算
/(1+2+...+n)
=1/[n(n+1)/2]
=2/[n(n+1)]
=2/n-2/(n+1)]
1+(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+…+(1/1+2+3+…+50)
=1+(2/2-2/3)+(2/3-2/4)+...+(2/50-2/51)
=1+2/2-2/3+2/3-2/4+...+2/50-2/51
=2-2/51
1+(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+…+(1/1+2+3+…+50)
=1+(2/2-2/3)+(2/3-2/4)+...+(2/50-2/51)
=1+2/2-2/3+2/3-2/4+...+2/50-2/51
=2-2/51
1+2+3+……+n=n(n+1)/2
所以1/(1+2+3+……+n)=2/n(n+1)=2*[1/n-1/(n+1)]
所以1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+50)
=2*[(1/2-1/3)+(1/3-1/4)+……(1/50-1/51)]
=2*(1-1/51)
=100/51
1/(1+2+...+n)
=1/[n(n+1)/2]
=2/[n(n+1)]
=2/n-2/(n+1)]
1+(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+…+(1/1+2+3+…+50)
=1+(2/2-2/3)+(2/3-2/4)+...+(2/50-2/51)
=1+2/2-2/3+2/3-2/4+...+2/50-2/51
=2-2/51