由条件,存在η∈(0,1),满足f'(η)=0。令G(x) = (1-x)²f'(x),则G(η) = G(1) = 0所以,存在ξ∈(η,1),使G'(ξ)=0,即(1-ξ)²f''(ξ)-2(1-ξ)f'(ξ)=0由于ξ<1,所以(1-ξ)f''(ξ)-2f'(ξ)=0,即f''(ξ)=2f'(ξ)/(1-ξ).