求函数√(4-x^2)在[-1,1]的定积分
∫√(4-x^2)dx
=2∫√[1-(x/2)^2]dx
令x/2=sint
=2∫cost*(2sint)'dt
=4∫(cost)^2dt
=∫(1+cos2t)d(2t)
=2t+sin2t+C
x∈[-1,1]所以t∈[-π/2,π/2]
所以定积分结果为
(2t+sin2t)|[-π/2,π/2]=2π
希望对楼主有所帮助,望采纳!
根据对称性,并提出根号里的4,换元x/2,原积分化为8倍的√(1-x^2)的积分,积分限0到1/2
x变为sinx,积分变为8倍的√(cosx)^2的积分,积分限变0到π/6,
最后变为2倍√(cosx+1)积分限0到π/3
积分=2*(sin60°+π/3)=√3+2π/3