设u=f(x,y,z),φ(x눀,e∧y,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数且Ȣφ⼀φz≠0,求du⼀dx

求解!!
2024-12-30 21:45:57
推荐回答(2个)
回答1:

u=f(x,y,z), y=sinx
du=əf/əx*dx+əf/əy*dy+əf/əz*dz
du/dx=əf/əx+əf/əy*dy/dx+əf/əz*dz/dx
φ(x²,e^y,z)=0
dφ=əφ/əx²*dx²+əφ/əe^y*de^y+əφ/əz*dz=0
=əφ/əx²*2xdx+əφ/əe^y*e^y*cosxdx+əφ/əz*dz
dz/dx=-(əφ/əx²*2x+əφ/əe^y*e^y*cosx)/(əφ/əz)
du/dx=əf/əx+əf/əy*dy/dx+əf/əz*dz/dx
=əf/əx+əf/əy*cosx-əf/əz*(əφ/əx²*2x+əφ/əe^y*e^y*cosx)/(əφ/əz)

回答2:

逐步求导即可啊