定积分 练习题 请写 出解题步骤,越详细越好

2025-01-24 05:34:17
推荐回答(6个)
回答1:

∫(a~b)(1+x)dx
=∫(a~b)dx+∫(a~b)xdx
=b-a+0.5∫(a~b)dx^2
=b-a+0.5(b^2-a^2)

∫(a~b)(2x+3)dx
=∫(a~b)dx^2+3∫(a~b)dx
=b^2-a^2+3b-3a

∫(a~b)(e^x+1)dx
=∫(a~b)e^xdx+∫(a~b)dx
=e^b-e^a+b-a

∫(a~b)(1+x)^2dx
=∫(a~b)(1+2x+x^2)dx
=b-a+b^2-a^2+(1/3)(b^3-a^3)

∫(a~b)x^3dx
=(1/4)∫(a~b)dx^4
=(1/4)(b^4-a^4)

回答2:

∫(a~b)(1+x)dx =∫(a~b)(x+1/2x^2)=b-a+1/2(b^2-a^2)

∫(a~b)(2x+3)dx=∫(a~b)(3x+x^2)=3b-3a+b^2-a^2

∫(a~b)(e^x+1)dx =∫(a~b)(e^x+x)=e^b-e^a+b-a

∫(a~b)(1+x)^2dx =∫(a~b)1/3(1+x)^3=1/3(1+b)^3-1/3(1+a)^3

∫(a~b)x^3 dx=∫(a~b)1/4x^4=1/4b^4-1/4a^4

回答3:

这是最基本的题了吧~!
∫(a~b)(1+x)dx
=x+x²/2 |a~~b
=b+b²/2 -a-a²/2
=1/2*(b-a)(1+b+a)

∫(a~b)(2x+3)dx
=x²+3x |a~~b
=略

∫(a~b)(e^x+1)dx
=e^x+x |a~~b
=略

∫(a~b)(1+x)^2dx
=∫(a~b)(1+2x+x²)dx
=x+x²+x^3/3 |a~~b
=略

∫(a~b)x^3 dx
=x^4/4 |a~~b
=略

回答4:

1. [ x + x^2/2 ](a~b)
= [b+b^2/2]-[ a+a^2/2 ]

2. [ x^2 +3x](a~b)
= [ b^2 +3b ]-[a^2 +3a]

3. [ ex^x+1 + x](a~b)
= [eb^x+1 +b ]-[ea^x+1 +a]

4. ∫(a~b) (1+2x+x^2) dx
= [ x+x^2=x^3/3](a~b)
= 同上面几题

5. [x^4/4](a~b)
= [b^4/4]-[a^4/4]

回答5:

1.∫(a~b)(1+x)dx
=x+1/2x^2 |(a~b)
=b-a+1/2(b^2-a^2)
2.∫(a~b)(2x+3)dx
=x^2+3x|(a~b)
=3(b-a)+(b^2-a^2)
3.∫(a~b)(e^x+1)dx
=e^x+x|(a~b)
=e^b-e^a+b-a
4.∫(a~b)(1+x)^2dx
=1/3(1+x)^3 |(a~b)
=1/3[(1+b)^3-(1+a)^3]
5.∫(a~b)x^3 dx
=1/4x^4|(a~b)
=1/4(b^4-a^4)

回答6:

∫(a~b)(1+x)dx =1/2(b^2-a^2)

∫(a~b)(2x+3)dx=b^2-a^2

∫(a~b)(e^x+1)dx =e^b-e^a

∫(a~b)(1+x)^2dx =1/3(1+b)^3-1/3(1+a)^3

∫(a~b)x^3 dx=1/4b^4-1/4a^4