一般来讲群的元素个数称为群的阶.
对于群当中的某个元素a,最小的满足a^n=e的正整数n称为元素a的阶(也叫周期),如果不存在这种n可以称a的周期为0(或无穷).可以等价地说a生成的循环群的阶就是a的阶.
证明:设群g中的元素x
是阶数大于2的元素
,由于阶数大于2,因此,它的逆不是自身,并且,它的逆的阶数也大于2。因此阶数大于2的元素成对出现,必为偶数个。
由Sylow定理知35阶G群有唯一的5阶子群A和7阶子群B,且A和B都是正规子群
取A中的5阶元a和B中的7阶元b,由A和B的正规性以及A∩B={e}得ab=ba,这样ab就是G的35阶元,即G必定是循环群