如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角

2025-01-05 00:02:12
推荐回答(2个)
回答1:

(1)证明:因为AB=AC
所以角B=角C
因为BE=CF
BD=CE
所以三角形BDE全等三角形CEF (SAS)
所以DE=FE
所以三角形DEF是等腰三角形
(2)解:因为角A+角B+角C=180度
角A=50度
所以角B+角C=130度
因为角B=角C(已证)
所以角B=65度
因为三角形BDE全等三角形CEF (已证)
所以角BDE=角CEF
因为角B+角BDE+角BED=180度
所以角BDE+角BED=115度
所以角BED+角CEF=115度
因为角BED+角CEF+角DEF=180度(平角等于180度)
所以角DEF=65度

回答2:

解答:(1)证明:∵AB=AC,
∴∠B=∠C,
在△BDE和△CEF中,

BD=CE
∠B=∠C
BE=CF

∴△BDE≌△CEF(SAS),
∴DE=EF,
∴△DEF是等腰三角形;

(2)解:∵△BDE≌△CEF,
∴∠BDE=∠CEF,
∴∠BED+∠CED=∠BED+∠BDE,
∵∠B+(∠BED+∠BDE)=180°,
∠DEF+(∠BED+∠BDE)=180°,
∴∠B=∠DEF,
∵∠A=50°,AB=AC,
∴∠B=
1
2
(180°-50°)=65°,
∴∠DEF=65°.