微分x^2*dy⼀dx=y^2-xy 求解 要详细过程

2024-12-17 02:20:39
推荐回答(4个)
回答1:

简单计算一下即可,答案如图所示

回答2:

x^2*dy/dx=y^2-xy
x ≠ 0 时 dy/dx = (y^2-xy)/x^2 = (y/x)^2 - (y/x) 是齐次方程
令 y/x = p, 则 dy/dx = p+xdp/dx,
p+xdp/dx = p^2 - p, xdp/dx = p^2 - 2p
2dp/(p^2-2p) = 2dx/x, [1/(p-2)-1/p]dp = 2dx/x
ln[(p-2)/p] = 2lnx+lnC, (p-2)/p = Cx^2,
y-2x = Cyx^2
x = 0 时 y = 0 已包含在上述通解中。

回答3:

这是个齐次方程,如图所示,

回答4: