如图,△ABC内接于圆O,AB=AC,过点A作AE∥BC交圆O直径BD的延长线于点E.(1)求AE与圆O的位置关系,并加

2024-12-18 00:47:22
推荐回答(2个)
回答1:

(1)AE与圆O的乎配扰位卖凯置关系式相切,
证明:作射线AO交BC于F,
∵AB=AC,
∴AF⊥BC,
∵AE∥BC,
∴AF⊥AE,
∵AF过O,
∴AE是⊙O的切线;
(2)解:作直径CM,连接BM,
则∠M=∠BAC,
∵sin∠BAC=
3
5
,BC=6,

6
CM
=
3
5

∴CM=10,
即BD=10,OC=5,
∵AB=AC,AF⊥BC,
∴CF=BF=3,
由勾股定理得:OF=4,则AF=4+5=9,由勾股定理得:AC=
92+32
=3
10

∵∠ACB=∠ADB,
∴cos∠ADB=cos∠岁旦ACE,

AD
10
=
3
3
10

∴AD=
10

回答2:

(1)AE与圆O的位置关系式相切,
证明:作射线AO交BC于F,
∵AB=AC,
∴AF⊥BC,
∵AE∥BC,
∴AF⊥AE,
∵AF过O,
∴AE是⊙O的切线世顷;

(2)解嫌启:作直径CM,连接BM,
则∠M=∠BAC,
∵sin∠BAC=

3
5
,BC=6,
6
CM
=
3
5

∴CM=10,
即BD=10,OC=5,
∵AB=AC,AF⊥BC,
∴CF=BF=3,
由勾股定理得:OF=4,则AF=4+5=9,由勾股定理得:AC=
92+32
=3
10

∵∠ACB=∠搜者陆ADB,
∴cos∠ADB=cos∠ACE,
AD
10
=
3
3
10

∴AD=
10