何为络合物?

2024-12-21 11:06:56
推荐回答(2个)
回答1:

金属二氢化物与σ-键络合物

——结构、理论、反应性

Metal Dihydrogen and σ-Bond Complexes

Structure, Theory and Reactivity

材料科学与工程学院 周 艳

一、有关背景

在配位化学的发展历史上,Kubas络合物的发现具有十分重要的意义。早在1920年,路易斯观点关于化学键中电子对的作用其实就已经涉及到孤电子与金属的配位键了。比如,氨的孤对电子给予Co3+即形成了经典的Werner钴-氨络合物。随后的发展使配位概念不仅仅局限于孤对电子作为给体。1950年左右,Wilkinson,Chatt,Fischer等人的一系列发现说明不饱和配体(如环戊二烯离子,乙烯)的π电子也能与金属离子结合。而正是这些π键络合物促使了现代有机金属化学和均相催化的发展。

1984年Kubas报道了分子氢络合物,它为σ-络合物提供了有力的证据,σ络合物中σ键电子对使配体与金属紧密结合。分子氢仅仅只包含一对σ键电子,但这具有特殊性,因此σ键的普遍性急需确定。1960年后虽然发现了大量σ络合物,但该领域仍有些问题停滞不前。1984年后该领域的发展日益活跃,出现了许多新的不可意料的现象,如量子交换偶合,二氢键合,二氢络合物,以及非经典的循变路径等。虽然氢是最简单的元素,只含有一个质子和一个电子,但其性质和作用却是非同一般的,它与金属形成的络合物即是其中的一个方面。

二、本书的意义

本书在二氢络合物问题和σ络合物的其它主要方面上都继承了Kubas的观点。例如,C-H键的σ键合是烷基活化的第一步,其目的就是选择性功能化烷基。随着甲烷在化学工业中的用量日益增加,与之密切相关的σ络合物这一领域将会越来越重要。工业上许多用过渡金属作催化剂的硅烷化反应中,Si-H键的σ键合具有相当重要的地位。

本书可以说是对二十世纪σ络合物科学的一个总结。当然,勿庸置疑,这个领域会不断有令我们惊奇的情况出现。比如,现在已证实:利用分子氢的酶(如氢化酶),在其相关的反应历程中有σ络合物中间体出现。同样,在非均相催化中可能也出现了σ络合物,这需要进一步研究。

三、本书的主要内容

作者首先在绪言部分介绍了σ络合物中的非经典键合,过渡金属络合物的小分子活化,σ键结合中反应配位的σ络合物中间体,σ键配位和结合中反馈作用的重要性,σ络合物的反应性:σ键置换、酸度和X-H键的异裂。

第二章简述了二氢络合物的背景、发现及其发展。

第三章介绍了二氢络合物的合成和一般性质,作者将二氢络合物划分成稳定的二氢络合物和室温不稳定的二氢络合物两类分别进行了详细的说明。

第四章从理论与实验的角度讲述了二氢与σ配体的键合及活化。其中包括金属二氢化物的理论发展与计算方法学;二氢氧化加成的理论研究;预测的第一个二氢σ络合物:二氢化钯;M(CO)3(PR3)2H2的理论研究与二氢配位的键模型;与其它配体相比二氢作为π受体和给体的相对强度;二氢与二氢化物配位:二氢氧化加成的活性;多氢化物-二氢络合物;Cp和Tp络合物;多氢络合物与卤素配体;配位σ键与顺式配体的相互作用:氢化物-二氢络合物的顺式效应;分子内氢交换、多氢络合物及σ-键置换;键合到金属离子上的二氢和甲烷;金属表面、金属氧化物和氢化物、非过渡金属体系与二氢的相互作用。

第五章是二氢络合物的结构与NMR研究,分别介绍了衍射方法、固态NMR,溶液NMR:JHD耦合与同位素效应,NMR松弛时间T1,氘四级耦合,二氢旋转效应,二氢配位的H-H距离及其结晶和结构。

第六章介绍了二氢-氢化物配体体系的分子内动力学:氢旋转、交换、量子力学效应。主要包括M(η2-H2)中的二氢旋转和分子内的氢重排和交换两大内容。

第七章σ配体与经典配体的键合和结合的热力学、动力学和同位素效应。这一章主要包括以下内容:二氢与金属σ键配位的热力学;二氢与σ配体的键强度及经典配体,熵的重要性;二氢、烷烃及其σ配体的生成动力学和取代动力学;二氢和其它σ配体的配位和氧化加成反应和动力学;σ配体配位和氧化加成中的同位素效应。

第八章介绍了配位二氢的振动研究。包括η2-H2的振动模型;W(H2)(CO)2(PCy3)2的普通配位分析;振动分析得出的二氢络合物键合特征;延伸的二氢络合物中的H-H和M-H2方式。

第九章介绍了二氢络合物的反应和酸度。主要内容有配位二氢的均裂;同位素交换和其它分子内二氢交换反应;配位二氢的异裂和酸度;催化氢化和相关反应。

第十章金属酶和硫配体体系对氢和相关小分子的活化。主要内容有氢化酶:生物有机金属的生成和二氢开裂;氮化酶和固氮;加氧酶对碳氢化合物的活化;硫配体和硫化物上的氢活化模型。

十一章介绍了Si-H、Ge-H、Sn-H键的配位和活化。本章包括M(η2-Si-H)络合物的合成和表征;与金属的Si-H键与M-H2键比较;σ-硅络合物的反应及动力学;锗烷与锡烷σ络合物。

十二章则关于C-H键的配位和活化。详细介绍了C-H配位和环金属化;烷烃配位;σ络合物中C-H键的氧化加成和还原消除。

十三章涉及了B-H、X-H和X-Y键的配位和活化。不仅介绍了B-H键,也介绍了X—H(X代表孤对给体N、P、S)σ相互作用,以及X-Y(X、Y都是非氢元素)σ键相互作用。

本书对有机金属化学、催化化学、无机化学、物理化学等专业的科研人员和学生具有重要的参考价值。

回答2:

络合物

络合物之一

络合物通常指含有络离子的化合物,例如络盐[Ag(NH3)2]Cl、络酸H2[PtCl6]、络碱[Cu(NH3)4](OH)2等;也指不带电荷的络合分子,例如[Fe(SCN)3]、[Co(NH3)3Cl3]等。配合物又称络合物。

络合物的组成以[Cu(NH3)4]SO4为例说明如下:
(1)络合物的形成体,常见的是过渡元素的阳离子,如Fe3+、Fe2+、Cu2+、Ag+、Pt2+等。

(2)配位体可以是分子,如NH3、H2O等,也可以是阴离子,如CN-、SCN-、F-、Cl-等。

(3)配位数是直接同中心离子(或原子)络合的配位体的数目,最常见的配位数是6和4。

络离子是由中心离子同配位体以配位键结合而成的,是具有一定稳定性的复杂离子。在形成配位键时,中心离子提供空轨道,配位体提供孤对电子。

络离子比较稳定,但在水溶液中也存在着电离平衡,例如:

[Cu(NH3)4]2+Cu2++4NH3

因此在[Cu(NH3)4]SO4溶液中,通入H2S时,由于生成CuS(极难溶)

络合物之二

含有络离子的化合物属于络合物。

我们早已知道,白色的无水硫酸铜溶于水时形成蓝色溶液,这是因为生成了铜的水合离子。铜的水合离子组成为[Cu(H2O)4]2+,它就是一种络离子。胆矾CuSO4·5H2O就是一种络合物,其组成也可写为[Cu(H2O)4]SO4·H2O,它是由四水合铜(Ⅱ)离子跟一水硫酸根离子结合而成。在硫酸铜溶液里加入过量的氨水,溶液由蓝色转变为深蓝。这是因为四水合铜(Ⅱ)离子经过反应,最后生成一种更稳定的铜氨络离子[Cu(NH3)4]2+而使溶液呈深蓝色。如果将此铜氨溶液浓缩结晶,可得到深蓝色晶体[Cu(NH3)4]SO4,它叫硫酸四氨合铜(Ⅱ)或硫酸铜氨,它也是一种络合物。

又如,铁的重要络合物有六氰合铁络合物:亚铁氰化钾

K4[Fe(CN)6](俗名黄血盐)和铁氰化钾K3[Fe(CN)6](俗名赤血盐)。这些络合物分别含的六氰合铁(Ⅱ)酸根[Fe(CN)6]4-络离子和六氰合铁(Ⅲ)酸根[Fe(CN)6]3-络离子,它们是由CN-离子分别跟Fe2+和Fe3+络合而成的。

由以上例子可见:络离子是由一种离子跟一种分子,或由两种不同离子所形成的一类复杂离子。

络合物一般由内界(络离子)和外界两部分组成。内界由中心离子(如Fe2+、Fe3+、Cu2+、Ag+等)作核心跟配位体(如H2O、NH3、CN-SCN-、Cl-等)结合在一起构成。一个中心离子结合的配位体的总数称为中心离子的配位数。络离子所带电荷是中心离子的电荷数和配位体的电荷数的代

以[Cu(NH3)4]SO4为例,用图示表示络合物的组成如下:

络合物的化学键:络合物中的络离子和外界离子之间是以离子键结合的;在内界的中心离子和配位体之间以配位键结合。组成络合物的外界离子、中心离子和配位体离子电荷的代数和必定等于零,络合物呈电中性

、络合物

【络合物】又称配位化合物。凡是由两个或两个以上含有孤对电子(或π键)的分子或离子作配位体,与具有空的价电子轨道的中心原子或离子结合而成的结构单元称络合单元,带有电荷的络合单元称络离子。电中性的络合单元或络离子与相反电荷的离子组成的化合物都称为络合物。习惯上有时也把络离子称为络合物。随着络合化学的不断发展,络合物的范围也不断扩大,把NH+4、SO24-、MnO-4等也列入络合物的范围,这可称作广义的络合物。一般情况下,络合物可分为以下几类:(1)单核络合物,在1个中心离子(或原子)周围有规律地分布着一定数量的配位体,如硫酸四氨合铜[Cu(NH3)4]SO4、六氰合铁(Ⅱ)酸钾K4[Fe(CN)6]、四羧基镍Ni(CO)4等,这种络合物一般无环状结构。(2)螯合物(又称内络合物),由中心离子(或原子)和多齿配位体络合形成具有环状结构的络合物,如二氨基乙酸合铜:

螯合物中一般以五元环或六元环为稳定。(3)其它特殊络合物,主要有:多核络合物(含两个或两个以上的中心离子或原子),多酸型络合物,分子氮络合物,π-酸配位体络合物,π-络合物等。

【配位化合物】见络合物条。

【中心离子】在络合单元中,金属离子位于络离子的几何中心,称中心离子(有的络合单元中也可以是金属原子)。如[Cu(NH3)4]2+络离子中的Cu2+离子,[Fe(CN)6]4-络离子中的Fe2+离子,Ni(CO)4中的Ni原子等。价键理论认为,中心离子(或原子)与配位体以配位键形成络合单元时,中心离子(或原子)提供空轨道,是电子对的接受体。

【配位体】跟具有空的价电子轨道的中心离子或原子相结合的离子或分子。一般配位体是含有孤对电子的离子或分子,如Cl-、CN-、NH3、H2O等;如果一个配位体含有两个或两个以上的能提供孤对电子的原子,这种配位体称作多齿配位体或多基配位体,如乙二胺:

H2N—CH2—CH2—NH2,三乙烯四胺:H2N—C2H4—NH—C2H4—NH—C2H4—NH2

等。此外,有些含有π键的烯烃、炔烃和芳香烃分子,也可作为配位体,称π键配位体,它们是以π键电子与金属离子络合的。

【络离子】见络合物条。

【内界】在络合物中,中心离子和配位体组成络合物的内界,通常写在化学式的[ 〕内加以标示,如:

【外界】络合物内界以外的组成部分称外界。如[Cu(NH3)4]SO4中的SO24-离子。外界离子可以是阳离子,也可以是阴离子,但所带电荷跟内界络离子相反。在络合物中外界离子与内界络离子电荷的代数和为零。

【配位数】在络合单元中,一个中心离子(或原子)所能结合的配位体的配位原子的总数,就是中心离子(或原子)的配位数。如[Fe(CN)6]4-中,Fe2+是中心离子,其配位数为4,二氨基乙酸合铜(见络合物)中Cu2+是中心离子,它虽然与两个二氨基乙酸离子络合,但是直接同它络合的共有4个原子(2个N原子,2个O原子),因此C2+的配位数也是4。

【配位原子】配位体中具有孤对电子并与中心离子(或原子)直接相连的原子。

【单齿配位体】又称单基配位体,是仅以一个配键(即孤电子对)与中心离子或原子结合的配位体。如[Ag(NH3)2]+中的NH3分子,〔Hgl4]2-中的I-离子,[Cu(H2O)4]2+中的H2O分子等。

【单基配位体】见单齿配位体条。

【多齿配位体】又称多基配位体,若一个配位体含有两个或两个以上的能提供孤电子对的原子,这种配位体就叫多齿配位体。如乙二胺H2CH2—CH2—H2,乙二胺四乙酸酸根离子(EDTA):

【多基配位体】见多齿配位体条。

【螯合物】见络合物条。

【螯环】螯合物中所形成的环状结构。一般以五元环和六元环为稳定。

【螯合剂】能够提供多齿配位体和中心离子形成螯合物的物质。

【螯合效应】对同一种原子,若形成螯合物比单基配位体形成的络合物(非螯合物)要更加稳定,这种效应称作螯合效应。螯合物一般以五元环、六元环为最稳定,且一个络合剂与中心离子所形成的螯环的数目越多就越稳定。以铜离子Cu2+和氨分子及胺类形成的络合物为例:

【内轨型络合物】价键理论认为中心离子(或原子)和配位体以配位键结合,中心离子(或原子)则以杂化轨道参与形成配位键。若中心离子(或原子)以(n—1)d、ns、np轨道组成杂化轨道与配位体的孤对电子成键而形成的络合物叫内轨型络合物。如〔Fe(CN)6]4-离子中Fe2+以d2sp3杂化轨道与CN-成键;[Ni(CN)4]2-离子中Ni2+以dsp2杂化轨道与CN-成键。内轨型络合物的特点是:中心离子(或原子)的电子层结构发生了变化,没有或很少有末成对电子,因轨道能量较低,所以一般内轨型络离子的稳定性较强。

【外轨型络合物】若中心离子(或原子)以ns、np、nd轨道组成杂化轨道与配位体的孤对电子成键而形成的络合物叫外轨型络合物。如[FeF6]3-离子中Fe3+以sp3d2杂化轨道与F-成键;[Ni(H2O)6〕2+离子中Ni2+以sp3d2杂化轨道与H2O成键。有的资料把中心离子以ns、np轨道组成的杂化轨道和配位体成键形成的络合物也称作外轨型络合物,如[Zn(NH3)4]2+离子中,Zn2+以sp3杂化轨道与NH3成键。外轨型络合物的特点是:中心离子(或原子)电子层结构无变化,未成对电子数较多,因轨道能量较高,所以一般外轨型络合物的稳定性较差。

【低自旋络合物】含有较少的未成对电子的络合物,一般是内轨型络合物。这种络合物的中心离子的未成对电子数目,一般比络合前有所减少,如〔Fe(CN)6]3-中,Fe3+离子在未络合前3d亚层有5个未成对电子:

而在此络离子中Fe3+离子的3d亚层上只有1个未成对电子:

【高自旋络合物】含有较多的未成对电子的络合物,一般是外轨型络合物。这种络合物的中心离子的未成对电子数目,在络合前后一般保持不变。如[FeF6]3-络离子中Fe3+离子仍含有5个不成对电子。

【络合平衡】溶液中存在的络离子(或络合分子)的生成与离解之间的平衡状态。例如:

当络离子的生成与离解达到平衡状态时,虽然两个相反过程还在进行,但它们的浓度不再改变。

【稳定常数】络合平衡的平衡常数。通常指络合物的累积稳定常数,用K稳表示。例如:

对具有相同配位体数目的同类型络合物来说,K稳值愈大,络合物愈稳定。

【逐级稳定常数】络合物的生成一般是分步进行的。对应于这些平衡也有一系列的稳定常数,每一步的稳定常数就是逐级稳定常数。例如,[Cu(NH3)4]2+的生成(或解离)分四步:

K1、K2、K3、K4就是[Cu(NH3)4]2+的逐级稳定常数,逐级稳定常数的乘积就是累积稳定常数。

K稳=K1·K2·K3·K4

lgK稳=lgK1+lgK2+lgK3+lgK4

【不稳定常数】络合物的不稳定常数用K不稳表示,与稳定常数成倒数

对具有相同数目配位体的同类型络合物来说,K不稳愈大,络合物愈易离解,即愈不稳定。

【络酸】外界离子是氢离子,在溶液中能电离产生氢离子而显酸性的络合物。如氯铂酸即六氯合铂(Ⅳ)酸H2[PtCl6]:

H2[PtCl6]→2H++[PtCl6]2-

【络碱】外界离子是氢氧离子OH-,在溶液中能电离产生OH-而显碱性的络合物。如氢氧化四氨合铜(Ⅱ)[Cu(NH3)4](OH)2:

[Cu(NH3)4](OH)2→[Cu(NH3)4]2++2OH-

【络盐】又称错盐,指含有络离子的盐类。例如K4[Fe(CN)6]、[Ag(NH3)2]Cl、[Cu(NH3)4]SO4等。络盐中的络离子,在溶液中较稳定,很难离解,这是络盐和复盐的重要区别。

【错盐】见络盐条。

【维尔钠配位理论】1893年由瑞士化学家维尔纳(Wer-ner)提出。其要点是:(1)一些金属的化合价除主价外,还可以有副价。例如在CoCl3·4NH3中,钴的主价为3,副价为4,即三个氯离子满足了钴的主价,钴与氨分子的结合使用了副价。(2)络合物分为“内界”和“外界”,内界由中心离子与周围的配位体紧密结合,而外界与内界较易解离。例如CoCl3·4NH3可写成[Co(NH3)4Cl2]Cl,内界是[Co(NH3)4Cl2]+,外界是Cl-。(3)副价也指向空间的确定方向。维尔纳的配位理论解释了大量的实验事实,但对“副价”的本质未能给以明确的解释。

【络合物的价键理论】络合物的化学键理论之一。其要点如下:(1)中心离子(或原子)提供空轨道,配位体提供孤对电子,以配位键结合。(2)中心离子(或原子)参与成键的空轨道都是杂化轨道,具有一定的饱和性和方向性。(3)中心离子(或原子)提供杂化轨道接受配位体的孤对电子形成配位键时,由于采用的能级轨道不同,形成的络合物分为外轨型和内轨型。若中心离子(或原子)以ns、np、nd轨道组成杂化轨道和配位原子形成配位键时,就叫外轨型络合物,如[FeF6]3-;中心离子(或原子)以(n-1)d、ns、np轨道组成杂化轨道和配位原子形成配位键时,则叫内轨型络合物,如[Fe(CN)6]4-。

【络合物的晶体场理论】络合物的化学键理论之一。是1923~1935年由培特(H.Bethe)和冯弗莱克(J.H.Van Vleck)提出了晶体场理论(CFT),本世纪50年代晶体场理论又发展成配位场理论(LFT)。晶体场理论的基本观点是:认为中心离子和配位体之间的相互作用是静电作用。它的要点如下:(1)中心离子原来简并的d轨道在配位体电场的作用下,发生了能级分裂,有的能量升高,有的能量降低。分裂后,最高能量d轨道和最低能量d轨道之间的能量差叫分裂能。中心离子的d轨道能量在正八面体场中的分裂如下图所示:

中心离子的d轨道能量在正四面体场中的分裂如下图所示:

(2)分裂能Δ值的大小,主要受配位体的电场、中心离子的电荷及它属于第几过渡系等因素的影响。(3)使本来是自旋平行分占两个轨道的电子挤到同一轨道上去必会使能量升高,这增高的能量称为成对能,用Ep表示。在弱配位场中Δ<Ep,d电子尽可能占据较多的轨道且自旋平行,形成高自旋络合物;在强配位场中Δ>Ep,d电子尽可能占据能量较低的轨道形成低自旋络合物。

【晶体场稳定化能】在晶体场理论中将d电子从未分裂的d轨道进入分裂的d轨道所产生的总能量的下降值,称为晶体场稳定化能(CFSE)。总能量下降愈多,即CFSE愈大(负值绝对值愈大),络合物就愈稳定。

【络合物的分子轨道理论】络合物的化学键理论之一。化学键的分子轨道理论的基本观点,在这里都是完全适用的。分析中心离子(原子)和配位体组成分子轨道,通常按下列步骤进行:(1)找出中心离子(原子)和配位体的价电子轨道,按所组成的分子轨道是σ轨道还是π轨道分组,分别称为σ轨道和π轨道。(2)将配位体中的σ轨道和π轨道分别重新组合成若干新轨道,这些新轨道称为群轨道,使得这些群轨道的对称性分别与中心离子(原子)的各原子轨道相匹配。(3)将对称性相同的中心离子(原子)的原子轨道和配位体的群轨道组合成分子轨道。络合物的分子轨道理论可以得到和晶体场理论一致的结果,同时又能解释光谱化学系列、有机烯络合物的形成、羰基络合物的稳定性等方面的问题。