1/1*2+1/2*3+……+1/N(N+1)=(1-1/2)+(1/2-1/3)+……+(1/N-1/N+1)=1-1/N+1
1/1*3 + 1/3*5 + 1/5*7 +……+ 1/N(N+2) = (1-1/N+2)/2
9/10 + 99/100 + 999/1000 + 9999/10000 =1-1/10+1-1/100 +1-1/1000+1-1/10000=4-(1/10+1/100+1/1000+1/10000)=4- (1/10-1/100000)/1-1/10=4-1111/10000=……
1/10+1/100+1/1000+1/10000为等比数列
1/1*2 + 1/2*3 + 1/3*4 +……+ 1/N(N+1) =(1-1/2)+(1/2-2/3)+.......+(N-1/N-N/N+1)=1-N/N+1
后面一题是一样的意思.转了点小弯而已.提示下
1/1*3=(1-1/3)/2
1/3*5=(1/3-1/5)/2
第3题 9/10=1-1/10
99/100=1-1/100
...类推