//-----------------------------------------分割线----------------------------------------------------------------
解:f(x)在R上单调递增
证明:
f(0+1/2)=f(0)+f(1/2)+1/2
故f(0)=-1/2
f(1/2-1/2)=f(1/2)+f(-1/2)+1/2=f(0)
故f(-1/2)=-1
在定义域R中,设a>b,令a=b+c,此时必定有c>0.
由题意可知,
f(a)=f(b+c)=f(b)+f(c)+1/2
则f(a)-f(b)=f(c)+1/2
又f(c)=f(c+1/2-1/2)=f(c+1/2)+f(-1/2)+1/2=f(c-1/2)-1/2
因为c>0.故c+1/2>1/2.即有f(c+1/2)>0
所以f(a)-f(b)=f(c)+1/2=f(c+1/2)-1/2+1/2=f(c+1/2)>0
即在x的定义域内,当a>b时,恒有f(a)>f(b)
所以f(x)为单调递增.
//--------------------------------------------------------------------------------------------------------------------
祝楼主学习进步o(∩_∩)o
求采纳~~~$_$