已知x=√3+1⼀2,y=√3-1⼀2,求x눀-xy+y눀和1⼀x+1⼀y的值

2025-01-03 07:43:55
推荐回答(1个)
回答1:

x=(√3+1)/2 , y=(√3-1)/2

原式=1/x+1/y
=(x+y)/(xy)
=[(√3+1)/2+(√3-1)/2]/[(√3+1)/2×(√3-1)/2]
=[(√3+1+√3-1)/2]/[(√3+1)(√3-1)/4]
=√3/[(√3²-1²)/4]
=4√3/(3-1)
=4√3/2
=2√3