(1)1*2+2*3+3*4+...+10*11(写出过程)
=1/3*10*11*12
=440
(2)1*2+2*3+3*4+...+n*(n+1)
=1/3*n(n+1)(n+2)
(3)1*2*3+2*3*4+3*4*5+...+7*8*9
1*2*3=1/4*(1*2*3*4-0*1*2*3)
……
7*8*9=1/4*(7*8*9*10-6*7*8*9)
所以=1/4*7*8*9*10=1260
17 1)设熟练工与新工人每月安装电动车的数量分别为X,Y
则有
X + 2Y = 8
2X + 3Y = 14
解方程可得: X = 4, Y = 2
2)由1)的数据可知:熟练工人数(M) 上限 = 240 / 12 / 4 = 5, 下限是 M = 0. 也就是
抽调熟练工人数范围是 0 <= M <= 5
设招聘新工人数量为N,则有 (M * 4 + N * 2) * 12 = 240 即: 2M + N = 10
由2)条件 0 < N < 10 ,可知N 的可能取值包括: 8, 6, 4, 2 共4种招聘方案.
(说明:因为N <> 0 且 N <> 10,故排除 0和10的可能)
3)结算每种招聘方案下每月工资总额 = M * 2000 + N * 1200
a. M = 1, N = 8: 1 * 2000 + 8 * 1200 = 11600
b. M = 2, N = 6: 2 * 2000 + 6 * 1200 = 11200
c. M = 3, N = 4: 3 * 2000 + 4 * 1200 = 10800
d. M = 4, N = 2: 4 * 2000 + 2 * 1200 = 10400
按新工人数量多于熟练工数量的要求,选择工资最低的方案c
即:抽调3名熟练工,招聘4名新工人.