x=ρcosθ
原积分=∫(0,2π)(cosθ)^2dθ∫(0,a(1-cosθ)ρ^3dρ
=a^4/4∫(cosθ)^2(1-cosθ)^4dθ
=a^4/4∫[(cosθ)^6+6(cosθ)^4+(cosθ)^2]dθ(奇数次幂积分=0)
=a^4/32∫[(1+cos2θ)^3+12(1+cos2θ)^2+4(1+cos2θ)]dθ(仍然去掉奇数次幂)
=a^4/32∫[1+3(1+cos4θ)/2+12+6(1+cos4θ)+4]dθ
=a^4/64∫49dθ
=49πa^4/32