将xOz坐标面上的抛物线z눀=5x绕x轴旋转一周所生成的旋转曲面的方程为—— 求解释~

2025-01-04 15:30:27
推荐回答(2个)
回答1:

将XOZ坐标面上的抛物线Z(平方)=5X,y=0,绕X轴旋转一周,求所生成的旋转曲面的方程.。旋转时,由于x坐标没变,故仍为x。而原曲线上某一点饶x轴时,其到x轴距离为根号下y^2+z^2(其实等于原来的曲线的z点坐标的绝对值),代入得:y^2+z^2=5x 。

旋转曲面,也称回转曲面,是一类特殊的曲面,它是一条平面曲线绕着它所在的平面上一条固定直线旋转一周所生成的曲面。该直线称为旋转轴,该固定直线称为母线。曲面和过旋转轴的平面的交线称为经线或子午线,曲面和垂直于旋转轴的平面的交线称为纬线或平行圆。

扩展资料

在空间,一条曲线Г绕着定直线 l旋转一周所生成的曲面叫做旋转曲面,或称回转曲面。曲线Г叫做旋转曲面的母线,定直线 l 叫做旋转曲面的旋转轴,简称为轴。

母线上任意一点绕旋转轴旋转的轨迹是一个圆,称为旋转曲面的纬圆或纬线。以旋转轴为边界的半平面与旋转曲面的交线称为旋转曲面的经线。

说明:

(1)纬圆也可以看作垂直于旋转轴的平面与旋转曲面的交线;

(2)旋转曲面可由母线绕旋转轴旋转生成,也可以由纬圆族生成,轴则是纬圆族的连心线;

(3)任一经线都可以作为母线,但母线不一定是经线。

参考资料:百度百科旋转曲面

回答2: