∫ (tanx)^5 dx
=∫ tan³xtan²x dx
=∫ tan³x(sec²x-1) dx
=∫ tan³xsec²x dx - ∫ tan³x dx
=∫ tan³x d(tanx) - ∫ tanx(sec²x-1) dx
=(1/4)(tanx)^4 - ∫ tanxsec²x dx + ∫ tanx dx
=(1/4)(tanx)^4 - ∫ tanx d(tanx) + ∫ sinx/cosx dx
=(1/4)(tanx)^4 - (1/2)ln|tanx| - ∫ 1/cosx d(cosx)
=(1/4)(tanx)^4 - (1/2)ln|tanx| - ln|cosx| + C