1乘2+2乘3+3乘4+4乘5+…+N(N+1)
=(1/3)[1*2*3+2*3*3+3*4*3+……+N*(N+1)*3]
=(1/3){1*2*(3-0)+2*3*(4-1)+3*4*(5-2)+……+N*N+1)[(N+2)-(N-1)]}
=(1/3)[1*2*3-0*1*2+2*3*4-1*2*3+3*4*5-2*3*4+……N(N+1)(N+2)-(N-1)N(N+1)]
=(1/3)*N*(N+1)*(N+2)
==N(N+1)(N+2)/3
1*2+2*3+3*4+4*5+...+N*(N+1)
=1*(1+1)+2*(2+1)+3*(3+1)+4*(4+1)+...+N(N+1)
=1^2+2^2+3^2+4^2+...+N^2+(1+2+3+3+...+N)
=
n(n+1)=n+n^2
1*2+2*3+3*4+…+N(N+1)=1+2+3+...N+1^2+2^2+...+N^2=(1+N)*N/2+(1+N)*N*(2N+1)/6
其中1+2+3+...N=(1+N)*N/2,1^2+2^2+...+N^2=(1+N)*N*(2N+1)/6