已知x^2-3x+1=0,求x^3+1⼀x^3的值

2024-12-14 04:00:17
推荐回答(2个)
回答1:

x^2-3x+1=0
乘以x得 x-3+1/x=0
∴x+1/x=3
x³+1/x³
=(x+1/x)(x²-1+1/x²)
=3×[(x²+2+1/x²)-3]
=3×[(x+1/x)²-3]
=3×(3²-3)
=18

回答2:

解:
x^2-3x+1=0,x-3+1/x=0
(因为x不等于0,两边同时除以x)

x+1/x=3

(x+1/x)^2=9

x^2+1/x^2+2=9

x^2+1/x^2=7

x^3+1/x^3=(x+1/x)(x^2+1/x^2-1)=3*(7-1)=18