令1/x=t => x=1/t则f(t)=(1/t)²+5 * 1/t =1/t² + 5/t∴f(x)=1/x²+5/x (x≠0)或∵f(1/x)=x²+5x =1/(1/x)²+5/(1/x)∴f(x)=1/x²+5/x
设t=1/x则x=1/t所以f(t)=1/t^2+5/t再把t换成x,得f(x)=1/x²+5/x (x≠0)