设x+y=zk
x+z=yk
y+z=xk
将上式相加得2(x+y+z)=(x+y+z)k
(2-k)(x+y+z)=0
因为x+y+z不等于0 所以2-k=0 k=2
k带回去 则2(x+y-z)=y+x+2z-x-y
x+y-z=z
x+y=2z
则 x+y+z=3z
x+y-z=z
原式=3z分之z=1/3