由于x^2-y^2=5(x+y),所以(x-y)(x+y)=5(x+y),即(x+y)(x-y-5)=0
则或者x=-y或者x=y+5
假若x=-y,则x^2+xy+y^2=x^2-x^2+x^2=x^2=43
x=√43,y=-√43
假若x=y+5,则x^2+xy+y^2=x^2+x(x-5)+(x-5)^2=x^2+x^2-5x+x^2-10x+25=3x^2-15x+25=43
所以3x^2-15x-18=0,所以x=6或-1
当x=6时y=1,当x=-1时,y=-6
故方程组有3个解(√43,-√43),(6,1),(-1,-6)
由1得x-y=5或x+y=0,
若x-y=5则(x^2+xy+y^2)-(x-y)^2=43-25=18 得xy=6 , x=6,y=1
若x+y=0,则(x+y)^2-(x^2+xy+y^2)=-43, 得xy=-43 x= + -根号43,y= - +根号43
是4个解