f(x+1)=x^2-x+3=x^2+2x+1-(3x+3)+5=(x+1)^2-3(x+1)+5
所以f(x)=x^2-3x+5
把x-1代入上式,得
f(x-1)=(x-1)^2-3(x-1)+5=x^2-5x+9
用配方法:
f(x+1)=x^2-x+3
=>f(x+1)=x^2+2x+1-3x+2
=>f(x+1)=(x+1)^2-3(x+1)+5
=>f(x-1)=(x-1)^2-3(x-1)+5
f(x+1)=x^2-x+3
即:f(x+1)=((x+1)-1)^2-(x+1)+4
即:f(m)=(m-1)^2-m+4
使m=x-1,可得:
f(x-1)=(x-2)^2-x+5