解:1、1/2×3+1/3×4+……+1/199×200
=1/2-1/3+1/3-1/4+......+1、199-1/200
=1/2-1/200
=99/200
2、用换元法:
令1/2+1/3+......+1/2009=a,1/2+1/3+......+1/2009+1/2010=b
原式=b(1+a)-a(1+b)
=b+ab-a-ab
=b-a
=(1/2+1/3+......+1/2009+1/2010)-(1/2+1/3+......+1/2009)
=1/2010
3、999......99×999......99+1999......9
=999......99×999......99+1000......00(1994个0)+999......99(1994个9)
=999......99×(999......99+1)+1000......00
-999......99×1000......00(1994个0)+1000......0
=(999......99+1)×1000......00
=1000......00×1000......00(均1994个0)
=1000000......0000(3988个0)
4、(此题有误,应该是求1/2+1/6+1/12+1/20+1/30+1/42的值)
原式=1/1×2+1/2×3+1/3×4+1/4×5+1/5×6+1/6×7
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1/2-1/7
=5/14
5、(同第2题用换元法)
令1/2+1/3+......+1/2005=a,1/2+1/3+......+1/2005+1/2006=b
原式=b(1+a)-a(1+b)
=b+ab-a-ab
=b-a
=1/2006
望采纳,谢谢!
原式=1-1/2+1/2-1/3+1/3-1/4...+1/199-1/200
=1-1/200
=199/200
令a=1/2+1/3+1/4+...+1/2009
则原式=(a+1/2010)(1+a)-(1+a+1/2010)a
=a(1+a)+(1/2010)(1+a)-a(1+a)-(1/2010)a
=(1/2010)(1+a)-(1/2010)a
=1/2010×1+(1/2010)a-(1/2010)a
=1/2010
原式=999...9×999...9+2×999...9+1
=(999...9+1)²
=1000...0²(1994个0)
=100...0(3988个0)
原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-(1/2-1/2)-(1/3-1/3)-(1/4-1/4)-(1/5-1/5)-(1/6-1/6)-1/7
=1-0-0-0-0-0-1/7
=6/7
解:令1/2+1/3+……+1/2006=a,1/2+1/3+……+1/2005=b
则,原式=a(1+b)-(1+a)b
=a+ab-b-ab
=a-b
将a,b代入,得
a-b=1/2006