逻辑错误,准确位置为14行,正确代码如下:
#include
int main()
{
int i = 0;
for (i=100; i<=200; i++)
{
int j = 0;
for (j=2; j<=i-1; j++)
{
if (i%j == 0)
{
break;
}
}
if (j>=i)
{
printf("%d",i);
}
}
return 0;
}
扩展资料:
质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。
质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,
是素数或者不是素数。
如果
为素数,则
要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
1、首先打开vc6.0, 新建一个vc项目,添加头文件,如下图所示。
2、然后添加main函数,如下图所示。
3、这时定义 i, j,count三个变量,如下图所示。
4、然后使用第一层for循环,使用第二层for循环。
5、如果j能被i整除,就跳出内层循环,判断循环是否提前跳出,如果 j < i 说明在 2~j之间,i有可整除的数。
6、最后使用printf打印出i,用count计数,每五个数换行。
7、最后运行程序,如下图所示就完成输出了。
思路:从100到200依次循环判断是否是素数,如果是素数则输出。
素数就是只能被1和本身整除的数。
参考代码:
#include
int fun(int n){//判断n是否是素数
int i;
if(n<2) return 0;
for(i=2;i
评论
0
0
0
加载更多
我这有个C++语言的代码,你自己改改就行了
#include
#include
#include
using namespace std;
int main()
{
int i,j=0,b[100],k;
for(k=101;k<200;k++)
{
bool flag=true;
for(i=2;i
if(k%i==0)
{
flag=false;
break;
}
}
if(flag==true)
{
b[j]=k;
j++;
}
}
for(i=0;i
if(i==0)
cout< else
cout<<" "< }
cout<
}
你每次判断完一个数之后,应该要把count重新置0。
if(count==0) printf("%d\n",n);
else count=0;