(x^5+x^4+x^3+x^2+x+1)^2—x^5 如何分解因式

过程清晰
2025-01-02 08:45:27
推荐回答(2个)
回答1:

设P=x^4+x^3+x^2+x+1
原式=(x^5+P)^2-(x^5+P)+P
=(x^5+P)(x^5+P-1)+P
=(x^5+P)xP+P
=P(x^6+Px+1)
=(x^4+x^3+x^2+x+1)(x^6+x^5+x^4+x^3+x^2+x+1)
希望对你有点帮助!

回答2:

(x^5+x^4+x^3+x^2+x+1)^2-x^5
=(x^6-1)^2/(x-1)^2-x^5
=[x^12-2x^6+1-x^7+2x^6-x^5]/(x-1)^2
=[(x^7-1)(x^5-1)]/(x-1)^2
=(x^6+x^5+x^4+x^3+x^2+x+1)(x^4+x^3+x^2+x+1)