解答:(1)证明:连接OD、DB,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠CDB=90°,
∵E为BC边上的中点,
∴CE=EB=DE,
∴∠1=∠2,
∵OB=OD,
∴∠3=∠4,
∴∠1+∠4=∠2+∠3,
∵在Rt△ABC中,∠ABC=∠2+∠3=90°,
∴∠EDO=∠1+∠4=90°,
∵D为⊙O上的点,
∴DE是⊙O的切线.
(2)解:∠CAB=45°.
理由是:∵OA=OD,
∴∠A=∠ODA=45°,
∴∠DOA=180°-45°-45°=90°=∠EDO,
∴DE∥AO,
∵E为BC中点,OA=OB,
∴EO∥AD,
∴四边形AOED是平行四边形,
即当∠A=45°时,四边形AOED是平行四边形.
(3)解:OBED的形状是正方形.
理由是:∵∠EDO=∠DOB=∠EBA=90°,OB=OD,
∴四边形OBED是正方形,
即OBED的形状是正方形.
题目中根本没有给出DE=BE这一条件。需证明。