an=1/{1+2+3+4+.....+n}=2/[n(n+1)]=2[1/n(n+1)]=2(1/n - 1/n+1)a1=2(1-1/2)a2=2(1/2-1/3)...an=2(1/n - 1/n+1)Sn=a1+a2+a3+...+an=2(1-1/2+1/2-1/3+1/3-...+1/n - 1/n+1)=2(1-1/n+1)=2n/n+1
An=2/[n(n+1)]=2[1/n-1/(n+1)]累加可得Sn=2-2/(n+1)